Logo do repositório
 
A carregar...
Miniatura
Publicação

Unsupervised learning of satellite images enhances discovery of late Miocene fossil sites in the Urema Rift, Gorongosa, Mozambique

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
Unsupervised learning.pdf21.62 MBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

Paleoanthropological research focus still devotes most resources to areas generally known to be fossil rich instead of a strategy that first maps and identifies possible fossil sites in a given region. This leads to the paradoxical task of planning paleontological campaigns without knowing the true extent and likely potential of each fossil site and, hence, how to optimize the investment of time and resources. Yet to answer key questions in hominin evolution, paleoanthropologists must engage in fieldwork that targets substantial temporal and geographical gaps in the fossil record. How can the risk of potentially unsuccessful surveys be minimized, while maximizing the potential for successful surveys?

Descrição

Palavras-chave

Geospatial paleontology Southeast Africa Late miocene Remote sensing Unsupervised learning

Contexto Educativo

Citação

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

PEERJ

Licença CC

Métricas Alternativas