Repository logo
 
Publication

Riesz fractional integrals in grand lebesgue spaces on ℝn

dc.contributor.authorSamko, Stefan
dc.contributor.authorUmarkhadzhiev, Salaudin
dc.date.accessioned2017-04-07T15:56:32Z
dc.date.available2017-04-07T15:56:32Z
dc.date.issued2016-07
dc.description.abstractWe introduce conditions on the construction of grand Lebesgue spaces on R-n which imply the validity of the Sobolev theorem for the Riesz fractional integrals I-alpha and the boundedness of the maximal operator, in such spaces. We also give an inversion of the operator I-alpha by means of hypersingular integrals, within the frameworks of the introduced spaces. We also proof the denseness of C-0(infinity)(R-n) in a subspace of the considered grand space.
dc.identifier.doi10.1515/fca-2016-0033
dc.identifier.issn1311-0454
dc.identifier.urihttp://hdl.handle.net/10400.1/9446
dc.language.isoeng
dc.peerreviewedyes
dc.relation.isbasedonWOS:000380375000003
dc.titleRiesz fractional integrals in grand lebesgue spaces on ℝn
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage624
oaire.citation.issue3
oaire.citation.startPage608
oaire.citation.titleFractional Calculus and Applied Analysis
oaire.citation.volume19
person.familyNameSamko
person.givenNameStefan
person.identifier.orcid0000-0002-8022-2863
person.identifier.ridM-3726-2013
person.identifier.scopus-author-id6603416048
rcaap.rightsrestrictedAccess
rcaap.typearticle
relation.isAuthorOfPublication7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4
relation.isAuthorOfPublication.latestForDiscovery7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
samko2016.pdf
Size:
332.6 KB
Format:
Adobe Portable Document Format