Publication
Riesz fractional integrals in grand lebesgue spaces on ℝn
dc.contributor.author | Samko, Stefan | |
dc.contributor.author | Umarkhadzhiev, Salaudin | |
dc.date.accessioned | 2017-04-07T15:56:32Z | |
dc.date.available | 2017-04-07T15:56:32Z | |
dc.date.issued | 2016-07 | |
dc.description.abstract | We introduce conditions on the construction of grand Lebesgue spaces on R-n which imply the validity of the Sobolev theorem for the Riesz fractional integrals I-alpha and the boundedness of the maximal operator, in such spaces. We also give an inversion of the operator I-alpha by means of hypersingular integrals, within the frameworks of the introduced spaces. We also proof the denseness of C-0(infinity)(R-n) in a subspace of the considered grand space. | |
dc.identifier.doi | 10.1515/fca-2016-0033 | |
dc.identifier.issn | 1311-0454 | |
dc.identifier.uri | http://hdl.handle.net/10400.1/9446 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.relation.isbasedon | WOS:000380375000003 | |
dc.title | Riesz fractional integrals in grand lebesgue spaces on ℝn | |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.endPage | 624 | |
oaire.citation.issue | 3 | |
oaire.citation.startPage | 608 | |
oaire.citation.title | Fractional Calculus and Applied Analysis | |
oaire.citation.volume | 19 | |
person.familyName | Samko | |
person.givenName | Stefan | |
person.identifier.orcid | 0000-0002-8022-2863 | |
person.identifier.rid | M-3726-2013 | |
person.identifier.scopus-author-id | 6603416048 | |
rcaap.rights | restrictedAccess | |
rcaap.type | article | |
relation.isAuthorOfPublication | 7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4 | |
relation.isAuthorOfPublication.latestForDiscovery | 7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- samko2016.pdf
- Size:
- 332.6 KB
- Format:
- Adobe Portable Document Format