Repository logo
 
Publication

Soft-computing techniques applied to artificial tissue temperature estimation

dc.contributor.advisorRuano, M. Graca
dc.contributor.advisorRuano, A. E.
dc.contributor.authorTeixeira, C. A.
dc.date.accessioned2011-09-07T16:04:13Z
dc.date.available2011-09-07T16:04:13Z
dc.date.issued2008
dc.descriptionTese dout., Engenharia electrónica e computação - Processamento de sinal, Universidade do Algarve, 2008por
dc.description.abstractSafety and efficiency of thermal therapies strongly rely on the ability to quantify temperature evolution in the treatment region. Research has been developed in this field, and both invasive and non-invasive technologies have been reported. Till now, only the magnetic resonance imaging (MRI) achieved the hyperthermia/diathermia gold standard value of temperature resolution of 0.5oC in 1cm3, in an in-vivo scenario. However, besides the cost of MRI technology, it does not enable a broad-range therapy application due to its complex environment. Alternatively, backscattered ultrasound (BSU) seems a promising tool for thermal therapy, but till now its performance was only quantitatively tested on homogeneous media and on single-intensity and three-point assessment have been reported. This thesis reports the research performed on the evaluation of time-spatialtemperature evolution based mainly on BSU signals within artificial tissues. Extensive operating conditions were tested on several experimental setups based on dedicated phantoms. Four and eight clinical ultrasound intensities, up to five spatial points, homogeneous and heterogeneous multi-layered phantoms were considered. Spectral and temporal temperature-dependent BSU features were extracted, and applied as invasive and non-invasive methodologies input information. Softcomputing methodologies have been used for temperature estimation. From linear iterative model structure models, to multi-objective genetic algorithms (MOGA) model structure optimisation for linear models, radial basis functions neural netxi xii works (RBFNNs), RBFNNs with linear inputs (RBFLICs), and for the adaptivenetwork- based fuzzy inference system (ANFIS) have been used to estimate the temperature induced on the phantoms. The MOGA+RBFNN methodology, fed with completely data-driven information, estimated temperature with maximum absolute errors less than 0.5oC within two spatial axes. The proposed MOGA+RBFNN methodology applied to non-invasive estimation on multi-layered media, is a innovative approach, as far as known, and enabled a step forward on the therapeutic temperature characterisation, motivating future instrumentation temperature control.eng
dc.description.sponsorshipFundação para a Ciência e a Tecnologia( FCT)por
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)por
dc.formatapplication/pdfpor
dc.identifier.other621.3 TEI*Sof Cave
dc.identifier.tid101168519
dc.identifier.urihttp://hdl.handle.net/10400.1/237
dc.language.isoengpor
dc.relationPROCESSAMENTO DE SINAIS ULTRASÓNICOS DE HIPERTERMIA E CONTROLO DE SISTEMA TERAPÊUTICO
dc.relationHyperthermia ultrasonic systems: Intelligent optimization: HUSIO
dc.subjectTesespor
dc.subjectProcessamento de sianlpor
dc.subjectRedes neuronaispor
dc.subjectAlgoritmos genéticospor
dc.subjectTerapiaspor
dc.subjectTemperaturapor
dc.titleSoft-computing techniques applied to artificial tissue temperature estimationpor
dc.typedoctoral thesis
dspace.entity.typePublication
oaire.awardTitlePROCESSAMENTO DE SINAIS ULTRASÓNICOS DE HIPERTERMIA E CONTROLO DE SISTEMA TERAPÊUTICO
oaire.awardTitleHyperthermia ultrasonic systems: Intelligent optimization: HUSIO
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/POSI/SFRH%2FBD%2F14061%2F2003/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/POSC/POSC%2FEEA-SRI%2F61809%2F2004/PT
oaire.fundingStreamPOSI
oaire.fundingStreamPOSC
person.familyNameTeixeira
person.givenNameCésar
person.identifier.orcid0000-0001-9396-1211
person.identifier.ridA-3477-2012
person.identifier.scopus-author-id55826531700
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspor
rcaap.typedoctoralThesispor
relation.isAuthorOfPublication29e9844d-9355-4f2a-badf-9e7ad3117cdb
relation.isAuthorOfPublication.latestForDiscovery29e9844d-9355-4f2a-badf-9e7ad3117cdb
relation.isProjectOfPublicationc9d85a36-e057-4dd5-b4be-be2ed0cf0f51
relation.isProjectOfPublication950af8f8-5a43-45ef-9fe9-7cd0c3177a54
relation.isProjectOfPublication.latestForDiscovery950af8f8-5a43-45ef-9fe9-7cd0c3177a54
thesis.degree.grantorUniversidade do Algarve.por
thesis.degree.levelDoutorpor
thesis.degree.nameDoutouramento em Engenharia Electrónica e Computação. Processamento de sinalpor

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
tese_defendida.pdf
Size:
3.45 MB
Format:
Adobe Portable Document Format

Collections