Repository logo
 
Publication

Intrinsic Schreier split extensions

dc.contributor.authorMontoli, Andrea
dc.contributor.authorRodelo, Diana
dc.contributor.authorVan der Linden, Tim
dc.date.accessioned2020-07-24T10:50:54Z
dc.date.available2021-06-01T00:30:19Z
dc.date.issued2020-06
dc.description.abstractIn the context of regular unital categories we introduce an intrinsic version of the notion of a Schreier split epimorphism, originally considered for monoids. We show that such split epimorphisms satisfy the same homological properties as Schreier split epimorphisms of monoids do. This gives rise to new examples of S-protomodular categories, and allows us to better understand the homological behaviour of monoids from a categorical perspective.
dc.description.sponsorshipProgramma per Giovani Ricercatori "Rita Levi-Montalcini" - Italian government through MIUR
dc.description.sponsorshipCentre for Mathematics of the University of Coimbra [UID/MAT/00324/2019]
dc.description.sponsorshipPortuguese Government through FCT/MEC
dc.description.sponsorshipEuropean Regional Development Fund through the Partnership Agreement PT2020
dc.description.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1007/s10485-019-09588-4
dc.identifier.issn0927-2852
dc.identifier.urihttp://hdl.handle.net/10400.1/14169
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSpringer
dc.subjectSemidirect products
dc.subjectMonoids
dc.subjectMaltsev
dc.subjectLemma
dc.subjectFibration of points
dc.subjectJointly extremal-epimorphic pair
dc.subjectRegular category
dc.subjectUnital category
dc.subjectProtomodular category
dc.subjectMonoid
dc.subjectJónsson–Tarski variety
dc.titleIntrinsic Schreier split extensions
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage538
oaire.citation.issue3
oaire.citation.startPage517
oaire.citation.titleApplied Categorical Structures
oaire.citation.volume28
person.familyNameRodelo
person.givenNameDiana
person.identifier.ciencia-id6C16-FCF9-64A0
person.identifier.orcid0000-0002-4816-3234
person.identifier.ridAFH-8267-2022
person.identifier.scopus-author-id8216708900
rcaap.rightsopenAccesspt_PT
rcaap.typearticle
relation.isAuthorOfPublication311bbe08-1f8a-4c84-87e7-23ddd55c89a3
relation.isAuthorOfPublication.latestForDiscovery311bbe08-1f8a-4c84-87e7-23ddd55c89a3

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
arXiv version.pdf
Size:
305.86 KB
Format:
Adobe Portable Document Format