Publication
Evaluation birepresentations of affine type a soergel bimodules
dc.contributor.author | Mackaay, Marco | |
dc.contributor.author | Miemietz, Vanessa | |
dc.contributor.author | Vaz, Pedro | |
dc.date.accessioned | 2024-03-22T11:35:22Z | |
dc.date.available | 2024-03-22T11:35:22Z | |
dc.date.issued | 2024 | |
dc.description.abstract | In this paper, we use Soergel calculus to define a monoidal functor, called the evaluation functor, from extended affine type A Soergel bimodules to the homotopy category of bounded complexes in finite type A Soergel bimodules. This functor categorifies the well-known evaluation homomorphism from the extended affine type A Hecke algebra to the finite type A Hecke algebra. Through it, one can pull back the triangulated birepresentation induced by any finitary birepresentation of finite type A Soergel bimodules to obtain a triangulated birepresentation of extended affine type A Soergel bimodules. We show that if the initial finitary birepresentation in finite type A is a cell birepresentation, the evaluation birepresentation in extended affine type A has a finitary cover, which we illustrate by working out the case of cell birepresentations with subregular apex in detail. (c) 2023 Elsevier Inc. All rights reserved. | pt_PT |
dc.description.sponsorship | EP/S017216/1; MIS-F.4536.19 | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1016/j.aim.2023.109401 | pt_PT |
dc.identifier.issn | 0001-8708 | |
dc.identifier.uri | http://hdl.handle.net/10400.1/20536 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | Elsevier | pt_PT |
dc.relation | Center for Mathematical Analysis, Geometry and Dynamical Systems | |
dc.relation | Higher Structures and Applications | |
dc.subject | Evaluation map | pt_PT |
dc.subject | Evaluation functor | pt_PT |
dc.subject | Birepresentations | pt_PT |
dc.subject | Soergel category | pt_PT |
dc.title | Evaluation birepresentations of affine type a soergel bimodules | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Center for Mathematical Analysis, Geometry and Dynamical Systems | |
oaire.awardTitle | Higher Structures and Applications | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FMAT%2F04459%2F2013/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/3599-PPCDT/PTDC%2FMAT-PUR%2F31089%2F2017/PT | |
oaire.citation.startPage | 109401 | pt_PT |
oaire.citation.title | Advances in Mathematics | pt_PT |
oaire.citation.volume | 436 | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 3599-PPCDT | |
person.familyName | MACKAAIJ | |
person.givenName | MARCO | |
person.identifier.ciencia-id | F810-F5CB-9F35 | |
person.identifier.orcid | 0000-0001-9807-6991 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | restrictedAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 62310e63-1319-4bf3-87c8-1f6790d9f190 | |
relation.isAuthorOfPublication.latestForDiscovery | 62310e63-1319-4bf3-87c8-1f6790d9f190 | |
relation.isProjectOfPublication | ab6441e5-1f82-452c-86ad-05969ba843b5 | |
relation.isProjectOfPublication | 229dabb8-17af-4c32-a987-fae1a738940a | |
relation.isProjectOfPublication.latestForDiscovery | 229dabb8-17af-4c32-a987-fae1a738940a |