Repository logo
 
Publication

Non-intrusive load monitoring of household devices using a hybrid deep learning model through convex hull-based data selection

dc.contributor.authorHabou Laouali, Inoussa
dc.contributor.authorRuano, Antonio
dc.contributor.authorRuano, Maria da Graça
dc.contributor.authorBennani, Saad Dosse
dc.contributor.authorFadili, Hakim El
dc.date.accessioned2022-02-14T11:16:27Z
dc.date.available2022-02-14T11:16:27Z
dc.date.issued2022-02-07
dc.date.updated2022-02-11T14:46:16Z
dc.description.abstractThe availability of smart meters and IoT technology has opened new opportunities, ranging from monitoring electrical energy to extracting various types of information related to household occupancy, and with the frequency of usage of different appliances. Non-intrusive load monitoring (NILM) allows users to disaggregate the usage of each device in the house using the total aggregated power signals collected from a smart meter that is typically installed in the household. It enables the monitoring of domestic appliance use without the need to install individual sensors for each device, thus minimizing electrical system complexities and associated costs. This paper proposes an NILM framework based on low frequency power data using a convex hull data selection approach and hybrid deep learning architecture. It employs a sliding window of aggregated active and reactive powers sampled at 1 Hz. A randomized approximation convex hull data selection approach performs the selection of the most informative vertices of the real convex hull. The hybrid deep learning architecture is composed of two models: a classification model based on a convolutional neural network trained with a regression model based on a bidirectional long-term memory neural network. The results obtained on the test dataset demonstrate the effectiveness of the proposed approach, achieving F1 values ranging from 0.95 to 0.99 for the four devices considered and estimation accuracy values between 0.88 and 0.98. These results compare favorably with the performance of existing approaches.pt_PT
dc.description.sponsorshipThis research was funded by Programa Operacional Portugal 2020 and Operational Program CRESC Algarve 2020, grant numbers 39578/2018 and 72581/2020. Antonio Ruano also acknowledges the support of Fundação para a Ciência e Tecnologia, grant UID/EMS/50022/2020, through IDMEC under LAETApt_PT
dc.description.sponsorshipGrant numbers 72581/2020
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationEnergies 15 (3): 1215 (2022)pt_PT
dc.identifier.doi10.3390/en15031215pt_PT
dc.identifier.issndoi: 10.3390/en15031215
dc.identifier.issn1996-1073
dc.identifier.urihttp://hdl.handle.net/10400.1/17541
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationAssociate Laboratory of Energy, Transports and Aeronautics
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectNon-intrusive load monitoringpt_PT
dc.subjectEnergy disaggregationpt_PT
dc.subjectLow frequency power datapt_PT
dc.subjectConvex hullpt_PT
dc.subjectBidirectional long short time memorypt_PT
dc.subjectConvolutional neural networkspt_PT
dc.titleNon-intrusive load monitoring of household devices using a hybrid deep learning model through convex hull-based data selectionpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleAssociate Laboratory of Energy, Transports and Aeronautics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/Concurso de Projetos de Investigação Científica e Desenvolvimento Tecnológico nos domínios Prioritários do Turismo, das Energias Renováveis e TIC - Programa Operacional do Algarve - 2018/SAICT-ALG%2F39578%2F2018/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50022%2F2020/PT
oaire.citation.issue3pt_PT
oaire.citation.startPage1215pt_PT
oaire.citation.titleEnergiespt_PT
oaire.citation.volume15pt_PT
oaire.fundingStreamConcurso de Projetos de Investigação Científica e Desenvolvimento Tecnológico nos domínios Prioritários do Turismo, das Energias Renováveis e TIC - Programa Operacional do Algarve - 2018
oaire.fundingStream6817 - DCRRNI ID
person.familyNameHABOU LAOUALI
person.familyNameRuano
person.familyNameRuano
person.givenNameInoussa
person.givenNameAntonio
person.givenNameMaria
person.identifier.ciencia-id9811-A0DD-D5A5
person.identifier.orcid0000-0002-6078-6813
person.identifier.orcid0000-0002-6308-8666
person.identifier.orcid0000-0002-0014-9257
person.identifier.ridB-4135-2008
person.identifier.ridA-8321-2011
person.identifier.scopus-author-id7004284159
person.identifier.scopus-author-id7004483805
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationba2eedb0-4eca-4346-a332-969d82e740a4
relation.isAuthorOfPublication13813664-b68b-40aa-97a9-91481a31ebf2
relation.isAuthorOfPublication61fc8492-d73f-46ca-a3a3-4cd762a784e6
relation.isAuthorOfPublication.latestForDiscoveryba2eedb0-4eca-4346-a332-969d82e740a4
relation.isProjectOfPublication71a067c0-ff6c-4ae9-825f-ba75e1abc4ab
relation.isProjectOfPublication9df77b70-8231-47e7-9b34-c702e9c6021c
relation.isProjectOfPublication.latestForDiscovery9df77b70-8231-47e7-9b34-c702e9c6021c

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
energies-15-01215-v2.pdf
Size:
3.84 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: