Repository logo
 
Publication

Assessing the effects of pseudo-absences on predictive distribution model performance

dc.contributor.authorChefaoui, Rosa
dc.contributor.authorLobo, J. M.
dc.date.accessioned2014-07-14T11:14:22Z
dc.date.available2014-07-14T11:14:22Z
dc.date.issued2008
dc.date.updated2014-07-14T10:20:06Z
dc.description.abstractModelling species distributions with presence data from atlases, museum collections and databases is challenging. In this paper, we compare seven procedures to generate pseudoabsence data, which in turn are used to generate GLM-logistic regressed models when reliable absence data are not available. We use pseudo-absences selected randomly or by means of presence-only methods (ENFA and MDE) to model the distribution of a threatened endemic Iberian moth species (Graellsia isabelae). The results show that the pseudo-absence selection method greatly influences the percentage of explained variability, the scores of the accuracy measures and, most importantly, the degree of constraint in the distribution estimated. As we extract pseudo-absences from environmental regions further from the optimum established by presence data, the models generated obtain better accuracy scores, and over-prediction increases. When variables other than environmental ones influence the distribution of the species (i.e., non-equilibrium state) and precise information on absences is non-existent, the random selection of pseudo-absences or their selection from environmental localities similar to those of species presence data generates the most constrained predictive distribution maps, because pseudo-absences can be located within environmentally suitable areas. This study showsthat ifwe do not have reliable absence data, the method of pseudo-absence selection strongly conditions the obtained model, generating different model predictions in the gradient between potential and realized distributions.por
dc.description.sponsorshipMEC Project (CGL2004-04309); a Fundacion BBVA project (Diseno de una red de reservas para la proteccion de la Biodiversidad en América del sur Austral utilizando modelos predictivos de distribucion con tax-ones hiperdiversos)
dc.identifier.citationChefaoui, R.M.; Lobo, J.M.Assessing the effects of pseudo-absences on predictive distribution model performance, Ecological Modelling, 210, 4, 478-486, 2008.por
dc.identifier.doihttp://dx.doi.org/10.1016/j.ecolmodel.2007.08.010
dc.identifier.urihttp://hdl.handle.net/10400.1/4768
dc.language.isoeng
dc.peerreviewedyespor
dc.publisherElsevierpor
dc.subjectPseudo-absencespor
dc.subjectDistribution modelspor
dc.subjectModel accuracypor
dc.subjectNon-equilibriumpor
dc.subjectGraellsia isabelaepor
dc.subjectIberian Peninsulapor
dc.titleAssessing the effects of pseudo-absences on predictive distribution model performancepor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage486por
oaire.citation.startPage478por
oaire.citation.titleEcological Modellingpor
oaire.citation.volume210por
rcaap.rightsrestrictedAccesspor
rcaap.typearticlepor

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Assessing the effects of pseudo-absences on predictive distribution model performance.pdf
Size:
482.23 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed upon to submission
Description: