Logo do repositório
 
Publicação

Forecasting electricity demand in households using MOGA-designed artificial neural networks

dc.contributor.authorBot, Karol
dc.contributor.authorRuano, Antonio
dc.contributor.authorRuano, Maria
dc.date.accessioned2021-06-21T15:53:06Z
dc.date.available2021-06-21T15:53:06Z
dc.date.issued2020-07
dc.description.abstractThe prediction of electricity demand plays an essential role in the building environment. It strongly contributes to making the building more energy-efficient, having the potential to increase both thermal and visual comfort of the occupants, while reducing energy consumption, by allowing the use of model predictive control. The present article focuses on the use of computational intelligence methods for prediction of the power consumption of a case study residential building, during a horizon of 12 hours. Two exogeneous variables (ambient temperature and day code) are used in the NARX model Two different time steps were considered in the simulations, as well as constrained and unconstrained model design. The study concluded that the smaller timestep and the constrained model design obtain the best power demand prediction performance. The results obtained compare very favourably with similar approaches in the literature Copyright (C) 2020 The Authors.pt_PT
dc.description.sponsorshipUIDB/50022/2020, 01/SAICT/2018pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.ifacol.2020.12.1985pt_PT
dc.identifier.issn2405-8963
dc.identifier.urihttp://hdl.handle.net/10400.1/16330
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectElectric powerpt_PT
dc.subjectPrediction methodspt_PT
dc.subjectNeural networkspt_PT
dc.subjectMultiobjective optimizationpt_PT
dc.titleForecasting electricity demand in households using MOGA-designed artificial neural networkspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage8230pt_PT
oaire.citation.issue2pt_PT
oaire.citation.startPage8225pt_PT
oaire.citation.titleIFAC-PapersOnLinept_PT
oaire.citation.volume53pt_PT
person.familyNameRuano
person.familyNameRuano
person.givenNameAntonio
person.givenNameMaria
person.identifier.ciencia-id3B19-9F1C-E2F1
person.identifier.ciencia-id9811-A0DD-D5A5
person.identifier.orcid0000-0001-5904-2166
person.identifier.orcid0000-0002-6308-8666
person.identifier.orcid0000-0002-0014-9257
person.identifier.ridB-4135-2008
person.identifier.ridA-8321-2011
person.identifier.scopus-author-id7004284159
person.identifier.scopus-author-id7004483805
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationbc300719-b790-4ee2-a678-666f2b10a7e7
relation.isAuthorOfPublication13813664-b68b-40aa-97a9-91481a31ebf2
relation.isAuthorOfPublication61fc8492-d73f-46ca-a3a3-4cd762a784e6
relation.isAuthorOfPublication.latestForDiscovery61fc8492-d73f-46ca-a3a3-4cd762a784e6

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
Forecasting electricity.pdf
Tamanho:
572.56 KB
Formato:
Adobe Portable Document Format