Logo do repositório
 
Publicação

Zebrafish Avatar-test forecasts clinical response to chemotherapy in patients with colorectal cancer

dc.contributor.authorCosta, Bruna
dc.contributor.authorEstrada, Marta F.
dc.contributor.authorGomes, António
dc.contributor.authorFernandez, Laura M.
dc.contributor.authorAzevedo, José M.
dc.contributor.authorPóvoa, Vanda
dc.contributor.authorFontes, Márcia
dc.contributor.authorAlves, António
dc.contributor.authorGalzerano, António
dc.contributor.authorCastillo-Martin, Mireia
dc.contributor.authorHerrando, Ignacio
dc.contributor.authorBrandão, Shermann
dc.contributor.authorCarneiro, Carla
dc.contributor.authorNunes, Vítor
dc.contributor.authorCarvalho, Carlos
dc.contributor.authorParvaiz, Amjad
dc.contributor.authorMarreiros, Ana
dc.contributor.authorFior, Rita
dc.date.accessioned2024-10-03T13:32:59Z
dc.date.available2024-10-03T13:32:59Z
dc.date.issued2024-06-05
dc.description.abstractCancer patients often undergo rounds of trial-and-error to find the most effective treatment because there is no test in the clinical practice for predicting therapy response. Here, we conduct a clinical study to validate the zebrafish patient-derived xenograft model (zAvatar) as a fast predictive platform for personalized treatment in colorectal cancer. zAvatars are generated with patient tumor cells, treated exactly with the same therapy as their corresponding patient and analyzed at single-cell resolution. By individually comparing the clinical responses of 55 patients with their zAvatar-test, we develop a decision tree model integrating tumor stage, zAvatar-apoptosis, and zAvatar-metastatic potential. This model accurately forecasts patient progression with 91% accuracy. Importantly, patients with a sensitive zAvatar-test exhibit longer progression-free survival compared to those with a resistant test. We propose the zAvatar-test as a rapid approach to guide clinical decisions, optimizing treatment options and improving the survival of cancer patients.eng
dc.description.sponsorshipMinistry of Education and Science | Fundao para a Cincia e a Tecnologia (Portuguese Science and Technology Foundation) FCT-PTDC/MEC-ONC/31627/2017 LISBOA-01-0145-FEDER-022170 FCT/Lisboa2020 Champalimaud Foundation BIAL Award in Clinical Medicine
dc.identifier.doi10.1038/s41467-024-49051-0
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/10400.1/25991
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSpringer Science and Business Media
dc.relationInstituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em Lisboa
dc.relation.ispartofNature Communications
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleZebrafish Avatar-test forecasts clinical response to chemotherapy in patients with colorectal cancereng
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleInstituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em Lisboa
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50021%2F2020/PT
oaire.citation.issue1
oaire.citation.titleNature Communications
oaire.citation.volume15
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameMarreiros
person.givenNameAna
person.identifier.ciencia-id9A12-9450-7051
person.identifier.orcid0000-0001-9410-4772
person.identifier.scopus-author-id57194785077
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublicationc0a8e5da-26ae-42a8-ab04-fa4df4356375
relation.isAuthorOfPublication.latestForDiscoveryc0a8e5da-26ae-42a8-ab04-fa4df4356375
relation.isProjectOfPublication0b14d63a-8f78-4e31-8a86-b72e1f07871f
relation.isProjectOfPublication.latestForDiscovery0b14d63a-8f78-4e31-8a86-b72e1f07871f

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
s41467-024-49051-0.pdf
Tamanho:
4.05 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
3.46 KB
Formato:
Item-specific license agreed upon to submission
Descrição: