Logo do repositório
 
A carregar...
Miniatura
Publicação

On the kernel of a singular integral operator with shift

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
10.7153_oam-2017-11-77.pdf102.08 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

Some estimates for the dimension of the kernel of the singular integral operator I - cUP(+) : L-p(n)(T) -> L-p(n)(T), p is an element of (1, infinity), with a non-Carleman shift are obtained, where P+ is the Cauchy projector, U is an isometric shift operator and c(t) is a continuous matrix function on the unit circle T. It is supposed that the shift has a finite set of fixed points and all the eigenvalues of the matrix c(t) at the fixed points, simultaneously belong either to the interior of the unit circle T or to its exterior. The case of an operator with a general shift is also considered. Some relations between those estimates and the resolvent set of the operator cU are pointed out.

Descrição

Palavras-chave

Contexto Educativo

Citação

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

Element

Licença CC

Métricas Alternativas