Publication
Deep learning for near-infrared spectral data modelling: Hypes and benefits
dc.contributor.author | Mishra, Puneet | |
dc.contributor.author | Passos, Dário | |
dc.contributor.author | Marini, Federico | |
dc.contributor.author | Xu, Junli | |
dc.contributor.author | Amigo, Jose M. | |
dc.contributor.author | Gowen, Aoife A. | |
dc.contributor.author | Jansen, Jeroen J. | |
dc.contributor.author | Biancolillo, Alessandra | |
dc.contributor.author | Roger, Jean Michel | |
dc.contributor.author | Rutledge, Douglas N. | |
dc.contributor.author | Nordon, Alison | |
dc.date.accessioned | 2023-02-10T14:17:02Z | |
dc.date.available | 2023-02-10T14:17:02Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Deep learning (DL) is emerging as a new tool to model spectral data acquired in analytical experiments. Although applications are flourishing, there is also much interest currently observed in the scientific community on the use of DL for spectral data modelling. This paper provides a critical and compre-hensive review of the major benefits, and potential pitfalls, of current DL tecnhiques used for spectral data modelling. Although this work focuses on DL for the modelling of near-infrared (NIR) spectral data in chemometric tasks, many of the findings can be expanded to cover other spectral techniques. Finally, empirical guidelines on the best practice for the use of DL for the modelling of spectral data are provided. | pt_PT |
dc.description.sponsorship | 15/IA/2984 HyperMicroMacro | |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1016/j.trac.2022.116804 | pt_PT |
dc.identifier.issn | 0165-9936 | |
dc.identifier.uri | http://hdl.handle.net/10400.1/19047 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | Elsevier | pt_PT |
dc.relation | Center for Electronics, Optoelectronics and Telecommunications | |
dc.relation | Center for Electronics, Optoelectronics and Telecommunications | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Artificial intelligence | pt_PT |
dc.subject | Neural networks | pt_PT |
dc.subject | NIR | pt_PT |
dc.subject | Near-infrared | pt_PT |
dc.subject | Spectroscopy | pt_PT |
dc.subject | Chemometrics | pt_PT |
dc.title | Deep learning for near-infrared spectral data modelling: Hypes and benefits | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Center for Electronics, Optoelectronics and Telecommunications | |
oaire.awardTitle | Center for Electronics, Optoelectronics and Telecommunications | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00631%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F00631%2F2020/PT | |
oaire.citation.startPage | 116804 | pt_PT |
oaire.citation.title | TrAC Trends in Analytical Chemistry | pt_PT |
oaire.citation.volume | 157 | pt_PT |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Passos | |
person.givenName | Dário | |
person.identifier | 324764 | |
person.identifier.ciencia-id | 3D13-C289-0595 | |
person.identifier.orcid | 0000-0002-5345-5119 | |
person.identifier.scopus-author-id | 21743737200 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 30c8500a-c12b-47c3-845e-9b64957cf233 | |
relation.isAuthorOfPublication.latestForDiscovery | 30c8500a-c12b-47c3-845e-9b64957cf233 | |
relation.isProjectOfPublication | 6c1217d9-1340-45e8-91d8-e75348854f62 | |
relation.isProjectOfPublication | 77b70459-1e8c-4a6c-9856-58860aaddb6b | |
relation.isProjectOfPublication.latestForDiscovery | 6c1217d9-1340-45e8-91d8-e75348854f62 |