Repository logo
 
Publication

Soil micromorphological image classification using deep learning: the porosity parameter

dc.contributor.authorArnay, Rafael
dc.contributor.authorHernandez-Aceituno, Javier
dc.contributor.authorMallol, Carolina
dc.date.accessioned2021-09-08T10:58:00Z
dc.date.available2021-09-08T10:58:00Z
dc.date.issued2021-04
dc.description.abstractIdentifying components and microstructures in soil and sediment thin sections is one of the many subjects of analysis in archeological research, as these features can provide information regarding the deposit from which they were extracted, such as its origin and nature, clues about their associated human contexts or alteration processes they might have undergone over time. This article presents a Deep Learning system based on Convolutional Neural Networks (CNN) to classify different porosity types of structures in photomicrographs from archeological soils and sediment thin sections, as a first step to build and expand a database that will boost research in this field of archeological research. The results obtained are encouraging and show that the presented models can be successfully applied to this classification task. The trained models have been used to estimate the quantity of the different microstructures in test images, obtaining a median error of around 2%. (C) 2021 Elsevier B.V. All rights reserved.
dc.description.sponsorshipUniversity of La Laguna, Spain; Spanish Ministry of Science, Innovation and Universities under the EIRA project [1207_2020]
dc.description.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.asoc.2021.107093
dc.identifier.issn1568-4946
dc.identifier.urihttp://hdl.handle.net/10400.1/17000
dc.language.isoeng
dc.peerreviewedyes
dc.publisherELSEVIER
dc.subjectSoil micromorphology
dc.subjectArcheology
dc.subjectDeep learning
dc.subjectImage classification
dc.subjectMicrostructures
dc.subject.otherComputer Science
dc.titleSoil micromorphological image classification using deep learning: the porosity parameter
dc.typejournal article
dspace.entity.typePublication
oaire.citation.startPage107093
oaire.citation.titleApplied Soft Computing
oaire.citation.volume102
person.familyNameMallol
person.givenNameCarolina
person.identifier.orcid0000-0001-5143-4253
person.identifier.ridH-4652-2015
person.identifier.scopus-author-id22938280200
rcaap.rightsrestrictedAccess
rcaap.typearticle
relation.isAuthorOfPublication9d9cdc02-b720-497e-87c9-4007f42aa372
relation.isAuthorOfPublication.latestForDiscovery9d9cdc02-b720-497e-87c9-4007f42aa372

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S1568494621000168-main.pdf
Size:
2.69 MB
Format:
Adobe Portable Document Format