Repository logo
 
Publication

Validation of a similarity measurement method for clustering cardiac signals

dc.contributor.authorKianimajd, A.
dc.contributor.authorGraca Ruano, Maria
dc.contributor.authorCarvalho, P.
dc.contributor.authorHenriques, J.
dc.contributor.authorRocha, T.
dc.contributor.authorParedes, S.
dc.contributor.editorMorgado, M.
dc.contributor.editorBernardes, R.
dc.contributor.editorAmador, M.
dc.contributor.editorAfonso, P. M.
dc.date.accessioned2019-11-20T15:08:02Z
dc.date.available2019-11-20T15:08:02Z
dc.date.issued2017
dc.description.abstractDevelopment of personalized cardiovascular management systems involves automatic identification of the current data as normal or pathological; considering cardiac data as time-series, the illness identification may be performed by seeking similarity between the current patient's time-series data and a reference signal and then proceeding to illness stratification (clustering). Seven of the most common methods of time-series similarity measurement were assessed by imposing 6 types of distortions to the reference signal, considering for each distortion 20 possible variations. This study employed 10 seconds length records of arterial blood pressure signals of healthy subjects, collected from a public database. Then clustering using Partitioning Around Medoids was performed among pathological and non-pathological data considering 3 different clusters. Clustering results confirm usage of the reduced basis Discrete Wavelet Transform resulting from the combination of Haar wavelet decomposition with the Karhunen-Loeve transforms, presenting an accuracy ranging from 76% to 85% when partitioning around Medoids clustering is used.
dc.description.sponsorship[H2020 - 692023]
dc.description.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.isbn978-1-5090-4801-4
dc.identifier.urihttp://hdl.handle.net/10400.1/13332
dc.language.isoeng
dc.peerreviewedyes
dc.publisherIeee
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleValidation of a similarity measurement method for clustering cardiac signals
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceUniviversidade de Coimbra, Faculdade de Medicina, Coimbra, Portugal
oaire.citation.title2017 Ieee 5th Portuguese Meeting on Bioengineering (Enbeng)
oaire.citation.title5th Ieee Portuguese Meeting on Bioengineering (Enbeng)
person.familyNameRuano
person.givenNameMaria
person.identifier.ciencia-id9811-A0DD-D5A5
person.identifier.orcid0000-0002-0014-9257
person.identifier.ridA-8321-2011
person.identifier.scopus-author-id7004483805
rcaap.rightsrestrictedAccess
rcaap.typeconferenceObject
relation.isAuthorOfPublication61fc8492-d73f-46ca-a3a3-4cd762a784e6
relation.isAuthorOfPublication.latestForDiscovery61fc8492-d73f-46ca-a3a3-4cd762a784e6

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
07889435.pdf
Size:
286.25 KB
Format:
Adobe Portable Document Format