Publication
Dixon-Rosenfeld lines and the standard model
dc.contributor.author | Chester, David | |
dc.contributor.author | Marrani, Alessio | |
dc.contributor.author | Corradetti, Daniele | |
dc.contributor.author | Aschheim, Raymond | |
dc.contributor.author | Irwin, Klee | |
dc.date.accessioned | 2023-10-13T10:51:25Z | |
dc.date.available | 2023-10-13T10:51:25Z | |
dc.date.issued | 2023-09-22 | |
dc.date.updated | 2023-10-01T03:22:32Z | |
dc.description.abstract | We present three new coset manifolds named Dixon-Rosenfeld lines that are similar to Rosenfeld projective lines except over the Dixon algebra C⊗H⊗O. Three different Lie groups are found as isometry groups of these coset manifolds using Tits’ formula. We demonstrate how Standard Model interactions with the Dixon algebra in recent work from Furey and Hughes can be uplifted to tensor products of division algebras and Jordan algebras for a single generation of fermions. The Freudenthal–Tits construction clarifies how the three Dixon-Rosenfeld projective lines are contained within C ⊗ H ⊗ J2(O), O ⊗ J2(C ⊗ H), and C ⊗ O ⊗ J2(H). $$\mathbb {C}\otimes \mathbb {H}\otimes \mathbb {O}$$ C ⊗ H ⊗ O . Three different Lie groups are found as isometry groups of these coset manifolds using Tits’ formula. We demonstrate how Standard Model interactions with the Dixon algebra in recent work from Furey and Hughes can be uplifted to tensor products of division algebras and Jordan algebras for a single generation of fermions. The Freudenthal–Tits construction clarifies how the three Dixon-Rosenfeld projective lines are contained within $$\mathbb {C}\otimes \mathbb {H}\otimes J_{2}(\mathbb {O})$$ C ⊗ H ⊗ J 2 ( O ) , $$\mathbb {O}\otimes J_{2}(\mathbb {C}\otimes \mathbb {H})$$ O ⊗ J 2 ( C ⊗ H ) , and $$\mathbb {C}\otimes \mathbb {O}\otimes J_{2}(\mathbb {H})$$ C ⊗ O ⊗ J 2 ( H ) . | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.citation | The European Physical Journal C. 2023 Sep 22;83(9):849 | pt_PT |
dc.identifier.doi | 10.1140/epjc/s10052-023-12006-8 | pt_PT |
dc.identifier.eissn | 1434-6052 | |
dc.identifier.uri | http://hdl.handle.net/10400.1/20055 | |
dc.language.iso | eng | pt_PT |
dc.language.rfc3066 | en | |
dc.peerreviewed | yes | pt_PT |
dc.publisher | MDPI | pt_PT |
dc.rights.holder | The Author(s) | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | High Energy Physics - Theory (hep-th) | pt_PT |
dc.subject | High Energy Physics - Phenomenology (hep-ph) | pt_PT |
dc.subject | Mathematical Physics (math-ph) | pt_PT |
dc.title | Dixon-Rosenfeld lines and the standard model | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.issue | 9 | pt_PT |
oaire.citation.startPage | 849 | pt_PT |
oaire.citation.title | The European Physical Journal C | pt_PT |
oaire.citation.volume | 83 | pt_PT |
person.familyName | Corradetti | |
person.givenName | Daniele | |
person.identifier.orcid | 0000-0001-8086-0593 | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | eb033bd7-b864-44d6-8c79-e64b25bb2b6e | |
relation.isAuthorOfPublication.latestForDiscovery | eb033bd7-b864-44d6-8c79-e64b25bb2b6e |