Repository logo
 
Publication

Neuro-genetic non-invasive temperature estimation: intensity and spatial prediction

dc.contributor.authorTeixeira, C. A.
dc.contributor.authorRuano, M. Graça
dc.contributor.authorRuano, Antonio
dc.contributor.authorPereira, W. C. A.
dc.date.accessioned2013-02-05T15:07:48Z
dc.date.available2013-02-05T15:07:48Z
dc.date.issued2008
dc.date.updated2013-01-26T18:00:38Z
dc.description.abstractObjectives: The existence of proper non-invasive temperature estimators is an essential aspect when thermal therapy applications are envisaged. These estimators must be good predictors to enable temperature estimation at different operational situations, providing better control of the therapeutic instrumentation. In this work, radial basis functions artificial neural networks were constructed to access temperature evolution on an ultrasound insonated medium. Methods: The employed models were radial basis functions neural networks with external dynamics induced by their inputs. Both the most suited set of model inputs and number of neurons in the network were found using the multi-objective genetic algorithm. The neural models were validated in two situations: the operating ones, as used in the construction of the network; and in 11 unseen situations. The new data addressed two new spatial locations and a new intensity level, assessing the intensity and space prediction capacity of the proposed model. Results: Good performance was obtained during the validation process both in terms of the spatial points considered and whenever the new intensity level was within the range of applied intensities. A maximum absolute error of 0:5 C 10% (0.5 8C is the gold-standard threshold in hyperthermia/diathermia) was attained with low computationally complex models. Conclusion: The results confirm that the proposed neuro-genetic approach enables foreseeing temperature propagation, in connection to intensity and space parameters, thus enabling the assessment of different operating situations with proper temperature resolution.por
dc.identifier.citationTeixeira, César A.; Graça Ruano, M.; Ruano, António E.; Pereira, Wagner C. A. Neuro-genetic non-invasive temperature estimation: Intensity and spatial prediction, Artificial Intelligence in Medicine, 43, 2, 127-139, 2008.por
dc.identifier.issn0933-3657
dc.identifier.otherAUT: MRU00118; ARU00698;
dc.identifier.urihttp://hdl.handle.net/10400.1/2225
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherElsevierpor
dc.subjectBlack-box modellingpor
dc.subjectArtificial neural networkspor
dc.subjectMulti-objective genetic algorithmspor
dc.subjectNon-invasive temperature estimationpor
dc.titleNeuro-genetic non-invasive temperature estimation: intensity and spatial predictionpor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage139por
oaire.citation.issue2por
oaire.citation.startPage127por
oaire.citation.titleArtificial Intelligence in Medicinepor
oaire.citation.volume43por
person.familyNameTeixeira
person.familyNameRuano
person.familyNameRuano
person.familyNamePereira
person.givenNameCésar
person.givenNameMaria
person.givenNameAntonio
person.givenNameWagner
person.identifier.ciencia-id9811-A0DD-D5A5
person.identifier.orcid0000-0001-9396-1211
person.identifier.orcid0000-0002-0014-9257
person.identifier.orcid0000-0002-6308-8666
person.identifier.orcid0000-0001-5880-3242
person.identifier.ridA-3477-2012
person.identifier.ridA-8321-2011
person.identifier.ridB-4135-2008
person.identifier.scopus-author-id55826531700
person.identifier.scopus-author-id7004483805
person.identifier.scopus-author-id7004284159
person.identifier.scopus-author-id35581987400
rcaap.rightsopenAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication29e9844d-9355-4f2a-badf-9e7ad3117cdb
relation.isAuthorOfPublication61fc8492-d73f-46ca-a3a3-4cd762a784e6
relation.isAuthorOfPublication13813664-b68b-40aa-97a9-91481a31ebf2
relation.isAuthorOfPublication5f0824cf-c471-4f03-8134-8003affbabe3
relation.isAuthorOfPublication.latestForDiscovery61fc8492-d73f-46ca-a3a3-4cd762a784e6

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Teixeira 2008_1.pdf
Size:
896.21 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: