Logo do repositório
 
A carregar...
Miniatura
Publicação

Maximal, potential and singular operators in the local "complementary" variable exponent Morrey type spaces

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
H11724.pdf315.43 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

We consider local "complementary" generalized Morrey spaces M-c({x0})p(.).omega (Omega) in which the p-means of function are controlled over Omega \ B(x(0), r) instead of B(x(0), r), where Omega subset of R-n is a bounded open set, p(x) is a variable exponent, and no monotonicity type condition is imposed onto the function omega(r) defining the "complementary" Morrey-type norm. In the case where omega is a power function, we reveal the relation of these spaces to weighted Lebesgue spaces. In the general case we prove the boundedness of the Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel, in such spaces. We also prove a Sobolev type M-c({x0})p(.).omega (Omega) -> M-c({x0})p(.).omega (Omega)-theorem for the potential operators I-alpha(.), also of variable order. In all the cases the conditions for the boundedness are given it terms of Zygmund-type integral inequalities-on omega(r), which do not assume any assumption on monotonicity of omega(r).

Descrição

Palavras-chave

Sufficient conditions Riesz-potentials Lebesgue spaces Homogeneous type Boundedness L-P(Center-Dot)

Contexto Educativo

Citação

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

Academic Press Inc Elsevier Science

Licença CC

Métricas Alternativas