Publication
Texture features for object salience
dc.contributor.author | Terzic, Kasim | |
dc.contributor.author | Krishna, Sai | |
dc.contributor.author | du Buf, J. M. H. | |
dc.date.accessioned | 2019-11-20T15:07:14Z | |
dc.date.available | 2019-11-20T15:07:14Z | |
dc.date.issued | 2017-11 | |
dc.description.abstract | Although texture is important for many vision-related tasks, it is not used in most salience models. As a consequence, there are images where all existing salience algorithms fail. We introduce a novel set of texture features built on top of a fast model of complex cells in striate cortex, i.e., visual area V1. The texture at each position is characterised by the two-dimensional local power spectrum obtained from Gabor filters which are tuned to many scales and orientations. We then apply a parametric model and describe the local spectrum by the combination of two one-dimensional Gaussian approximations: the scale and orientation distributions. The scale distribution indicates whether the texture has a dominant frequency and what frequency it is. Likewise, the orientation distribution attests the degree of anisotropy. We evaluate the features in combination with the state-of-the-art VOCUS2 salience algorithm. We found that using our novel texture features in addition to colour improves AUC by 3.8% on the PASCAL-S dataset when compared to the colour-only baseline, and by 62% on a novel texture-based dataset. (C) 2017 Elsevier B.V. All rights reserved. | |
dc.description.sponsorship | EU [ICT-2009.2.1-270247] | |
dc.identifier.doi | 10.1016/j.imavis.2017.09.007 | |
dc.identifier.issn | 0262-8856 | |
dc.identifier.issn | 1872-8138 | |
dc.identifier.uri | http://hdl.handle.net/10400.1/12937 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | Elsevier Science Bv | |
dc.relation | A neuro-dynamic framework for cognitive robotics: scene representations, behavioural sequences, and learning. | |
dc.subject | Primary visual-cortex | |
dc.subject | Region detection | |
dc.subject | Attention | |
dc.subject | Vision | |
dc.subject | Segmentation | |
dc.subject | Mechanisms | |
dc.subject | Images | |
dc.subject | Overt | |
dc.subject | Model | |
dc.subject | V1 | |
dc.title | Texture features for object salience | |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | A neuro-dynamic framework for cognitive robotics: scene representations, behavioural sequences, and learning. | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/5876/UID%2FEEA%2F50009%2F2013/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/3599-PPCDT/EXPL%2FEEI-SII%2F1982%2F2013/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/EC/FP7/270247/EU | |
oaire.citation.endPage | 51 | |
oaire.citation.startPage | 43 | |
oaire.citation.title | Image and Vision Computing | |
oaire.citation.volume | 67 | |
oaire.fundingStream | 5876 | |
oaire.fundingStream | 3599-PPCDT | |
oaire.fundingStream | FP7 | |
person.familyName | du Buf | |
person.givenName | Hans | |
person.identifier.orcid | 0000-0002-4345-1237 | |
person.identifier.rid | M-5125-2013 | |
person.identifier.scopus-author-id | 6604075916 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100008530 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | European Commission | |
rcaap.rights | openAccess | |
rcaap.type | article | |
relation.isAuthorOfPublication | cfad5636-2c77-4db0-a3a0-d7eb97ce6bee | |
relation.isAuthorOfPublication.latestForDiscovery | cfad5636-2c77-4db0-a3a0-d7eb97ce6bee | |
relation.isProjectOfPublication | 19a727e2-d775-407f-ab10-7d5f19577e08 | |
relation.isProjectOfPublication | 59235b52-882c-42ae-946a-d0507ff0f489 | |
relation.isProjectOfPublication | ef5f67fa-93e7-4d9a-8157-a59c70c4e0d9 | |
relation.isProjectOfPublication.latestForDiscovery | ef5f67fa-93e7-4d9a-8157-a59c70c4e0d9 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Terzic_2017_IVC_ObjectSalience_AAM.pdf
- Size:
- 1.72 MB
- Format:
- Adobe Portable Document Format