Repository logo
 
Publication

Large language models powered aspect-based sentiment analysis for enhanced customer insights

dc.contributor.authorÁgua, Mariana
dc.contributor.authorAntónio, Nuno
dc.contributor.authorCarrasco, Paulo
dc.contributor.authorRASSAL, CARIMO
dc.date.accessioned2025-01-29T13:44:46Z
dc.date.available2025-01-29T13:44:46Z
dc.date.issued2025-01-01
dc.description.abstractIn the age of social networks, user-generated content has become vital for organizations in tourism and hospitality. Traditional sentiment analysis methods often struggle to process large volumes of data and capture implicit sentiments. This study examines the potential of Aspect-Based Sentiment Analysis (ABSA) using Large Language Models (LLMs) to enhance sentiment analysis. By employing GPT-4o via ChatGPT, we benchmark three approaches: a fuzzy logic-based method, manual human analysis, and a new ChatGPT-based analysis. We analyze a dataset of 500 all-inclusive hotel reviews, comparing these methods to assess ChatGPT's effectiveness in identifying nuanced language and handling subjectivity. The findings reveal a high similarity between ChatGPT and human analysis, showcasing ChatGPT's ability to interpret complex sentiments and automate sentiment classification tasks. This study highlights the potential of LLMs in transforming customer feedback analysis, providing deeper insights, and improving responsiveness in the hospitality industry. These results contribute to academia by presenting a framework for using LLMs in ABSA and guiding future applications and development.eng
dc.identifier.doi10.18089/tms.20250101
dc.identifier.issn2182-8466
dc.identifier.urihttp://hdl.handle.net/10400.1/26693
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSchool of Management, Hospitality and Tourism, University of the Algarve
dc.relationInformation Management Research Center
dc.relation.ispartofTourism & Management Studies
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectAutomated sentiment analysis
dc.subjectAspect-based sentiment analysis
dc.subjectLarge language models
dc.subjectCustomer feedback analysis
dc.subjectChatGPT applications
dc.subjectNatural language processing
dc.titleLarge language models powered aspect-based sentiment analysis for enhanced customer insightseng
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleInformation Management Research Center
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04152%2F2020/PT
oaire.citation.endPage19
oaire.citation.issue1
oaire.citation.startPage1
oaire.citation.titleTourism & Management Studies
oaire.citation.volume21
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameCarrasco
person.familyNameRASSAL
person.givenNamePaulo
person.givenNameCARIMO
person.identifier.ciencia-id2A14-9818-5274
person.identifier.ciencia-idF614-EC12-458E
person.identifier.orcid0000-0002-0713-8366
person.identifier.orcid0000-0002-9917-4371
person.identifier.ridJEF-8855-2023
person.identifier.scopus-author-id55953500500
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublicationb24fdb1b-3371-4d7c-af04-697487be12e0
relation.isAuthorOfPublicationfff18a1f-8f82-437a-8b83-475759534d7b
relation.isAuthorOfPublication.latestForDiscoveryb24fdb1b-3371-4d7c-af04-697487be12e0
relation.isProjectOfPublication26b45b04-11c7-4fd2-8cda-5dabb80d1a1a
relation.isProjectOfPublication.latestForDiscovery26b45b04-11c7-4fd2-8cda-5dabb80d1a1a

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Paper+1+1-19.pdf
Size:
633.09 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: