Publication
Sign language gesture recognition with bispectrum features using SVM
dc.contributor.author | Ahmed, Hasmath Farhana Thariq | |
dc.contributor.author | Ahmad, Hafisoh | |
dc.contributor.author | Phang, Swee King | |
dc.contributor.author | Vaithilingam, Chockalingam Aravind | |
dc.contributor.author | Harkat, Houda | |
dc.contributor.author | Narasingamurthi, Kulasekharan | |
dc.contributor.editor | Phang, SK | |
dc.contributor.editor | Mahdiraji, GA | |
dc.contributor.editor | Vaithilingam, CA | |
dc.date.accessioned | 2021-06-24T11:36:05Z | |
dc.date.available | 2021-06-24T11:36:05Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Wi-Fi based sensing system captures the signal reflections due to human gestures as Channel State Information (CSI) values in subcarrier level for accurately predicting the fine-grained gestures. The proposed work explores the Higher Order Statistical (HOS) method by deriving bispectram features (BF) from raw signal by adopting a Conditional Informative Feature Extraction (CIFE) technique from information theory to form a subset of informative and best features. Support Vector Machine (SVM) classifier is adopted in the present work for classifying the gesture and to measure the prediction accuracy. The present work is validated on a secondary dataset, SignFi, having data collected from two different environments with varying number of users and sign gestures. SVM reports an overall accuracy of 83.8%, 94.1%, 74.9% and 75.6% in different environments/scenarios. | |
dc.description.sponsorship | Taylor's University through its TAYLOR'S PhD SCHOLARSHIP Programme | |
dc.description.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1063/5.0002344 | |
dc.identifier.isbn | 978-0-7354-1992-6 | |
dc.identifier.issn | 0094-243X | |
dc.identifier.uri | http://hdl.handle.net/10400.1/16626 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | American Institute of Physics | |
dc.relation.ispartofseries | AIP Conference Proceedings | |
dc.subject.other | Engineering | |
dc.title | Sign language gesture recognition with bispectrum features using SVM | |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.citation.conferencePlace | Taylors Univ Lakeside Campus, Subang Jaya, MALAYSIA | |
oaire.citation.startPage | 030001 | |
oaire.citation.title | 13Th International Engineering Research Conference (13Th Eureca 2019) | |
oaire.citation.volume | 2233 | |
person.familyName | Harkat | |
person.givenName | Houda | |
person.identifier.orcid | 0000-0002-7827-1527 | |
rcaap.rights | openAccess | |
rcaap.type | conferenceObject | |
relation.isAuthorOfPublication | ff3a322c-945f-465a-b746-c69eab18be72 | |
relation.isAuthorOfPublication.latestForDiscovery | ff3a322c-945f-465a-b746-c69eab18be72 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Sign Language Gesture Recognition with.pdf
- Size:
- 1.42 MB
- Format:
- Adobe Portable Document Format