Repository logo
 
Publication

Hotel demand forecasting models and methods using artificial intelligence: a systematic literature review

dc.contributor.authorHenriques, Henrique
dc.contributor.authorPereira, Luis Nobre
dc.contributor.authorHenriques, Henrique
dc.contributor.authorNobre Pereira, Luis
dc.date.accessioned2024-07-09T12:01:24Z
dc.date.available2024-07-09T12:01:24Z
dc.date.issued2024-05-07
dc.description.abstractThis systematic literature review (SLR) explores current state-of-the-art artificial intelligence (AI) methods for forecasting hotel demand. Since revenue management (RM) is crucial for business success in the hotel industry, this study aims to identify state-of-the-art effective AI -based solutions for hotel demand forecasting, including machine learning (ML), deep learning (DP), and artificial neural networks (ANNs). The study conducted an SLR using the PRISMA model and identified 20 papers indexed in Scopus and the Web of Science. It addresses the gaps in the literature on AI -based demand forecasting, highlighting the need for clarity in model specification, understanding the impact of AI on pricing accuracy and financial performance, and the challenges of available data quality and computational expertise. The review concludes that AI technology can significantly improve forecasting accuracy and empower data -driven decisions in hotel management. Additionally, this study discusses the limitations of AI -based demand forecasting, such as the need for high -quality data. It also suggests future research directions for further enhancing AI forecasting techniques in the hospitality industry.eng
dc.identifier.doi10.18089/tms.20240304
dc.identifier.issn2182-8466
dc.identifier.urihttp://hdl.handle.net/10400.1/25576
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSchool of Management, Hospitality and Tourism, University of the Algarve
dc.relationResearch Centre for Tourism, Sustainability and Well-being
dc.relation.ispartofTourism & Management Studies
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectArtificial Intelligence
dc.subjectHotel Demand Forecast
dc.subjectRevenue Management
dc.subjectMachine Learning
dc.subjectArtificial Neural Networks
dc.subjectDigital Transformation.
dc.titleHotel demand forecasting models and methods using artificial intelligence: a systematic literature revieweng
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch Centre for Tourism, Sustainability and Well-being
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04020%2F2020/PT
oaire.citation.issue3
oaire.citation.startPage39
oaire.citation.titleTourism & Management Studies
oaire.citation.volume20
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameHenriques
person.familyNameNobre Pereira
person.givenNameHenrique
person.givenNameLuis
person.identifier.ciencia-id4112-923C-B91D
person.identifier.ciencia-id6114-E329-972E
person.identifier.orcid0000-0002-5543-766X
person.identifier.orcid0000-0003-0917-7163
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublicationcc942caa-cde0-4349-8388-199555c2046b
relation.isAuthorOfPublication090a6604-b604-414b-a8d2-c4dc731b7b51
relation.isAuthorOfPublication.latestForDiscoverycc942caa-cde0-4349-8388-199555c2046b
relation.isProjectOfPublicationfa579efb-63c0-486e-b05d-859542b73647
relation.isProjectOfPublication.latestForDiscoveryfa579efb-63c0-486e-b05d-859542b73647

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Paper+4+39-51 (2).pdf
Size:
464.01 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: