Repository logo
 
Loading...
Thumbnail Image
Publication

On the functions generated by the general purpose analog computer

Use this identifier to reference this record.
Name:Description:Size:Format: 
preprint.pdf738.29 KBAdobe PDF Download

Advisor(s)

Abstract(s)

We consider the General Purpose Analog Computer (GPAC), introduced by Claude Shannon in 1941 as a mathematical model of Differential Analysers, that is to say as a model of continuous-time analog (mechanical, and later one electronic) machines of that time. The GPAC generates as output univariate functions (i.e. functions f:R→R). In this paper we extend this model by: (i) allowing multivariate functions (i.e. functions f:Rn→Rm); (ii) introducing a notion of amount of resources (space) needed to generate a function, which allows the stratification of GPAC generable functions into proper subclasses. We also prove that a wide class of (continuous and discontinuous) functions can be uniformly approximated over their full domain. We prove a few stability properties of this model, mostly stability by arithmetic operations, composition and ODE solving, taking into account the amount of resources needed to perform each operation. We establish that generable functions are always analytic but that they can nonetheless (uniformly) approximate a wide range of nonanalytic functions. Our model and results extend some of the results from [19] to the multidimensional case, allow one to define classes of functions generated by GPACs which take into account bounded resources, and also strengthen the approximation result from [19] over a compact domain to a uniform approximation result over unbounded domains.

Description

Preprint

Keywords

Citation

Research Projects

Research ProjectShow more

Organizational Units

Journal Issue