Repository logo
 
Publication

Joint model for zero-inflated data combining fishery-dependent and fishery-independent sources

dc.contributor.authorSilva, Daniela
dc.contributor.authorMenezes, Raquel
dc.contributor.authorAraújo, Gonçalo
dc.contributor.authorRosa, Renato
dc.contributor.authorMoreno, Ana
dc.contributor.authorSilva, Alexandra
dc.contributor.authorGarrido, Susana
dc.date.accessioned2025-10-21T08:58:52Z
dc.date.available2025-10-21T08:58:52Z
dc.date.issued2025-12
dc.description.abstractAccurately identifying spatial patterns of species distribution is crucial for scientific insight and societal benefit, aiding our understanding of species fluctuations. The increasing quantity and quality of ecological datasets present heightened statistical challenges, complicating spatial species dynamics comprehension. Addressing the complex task of integrating multiple data sources to enhance spatial fish distribution understanding in marine ecology, this study introduces a pioneering five-layer Joint model. The model adeptly integrates fishery-independent and fishery-dependent data, accommodating zero-inflated data and distinct sampling processes. A comprehensive simulation study evaluates the model performance across various preferential sampling scenarios and sample sizes, elucidating its advantages and challenges. Our findings highlight the model’s robustness in estimating preferential parameters, emphasizing differentiation between presence–absence and biomass observations. Evaluation of estimation of spatial covariance and prediction performance underscores the model’s reliability. Augmenting sample sizes reduces parameter estimation variability, aligning with the principle that increased information enhances certainty. Assessing the contribution of each data source reveals successful integration, providing a comprehensive representation of biomass patterns. Empirical application within a real-world context further solidifies the model’s efficacy in capturing species’ spatial distribution. This research advances methodologies for integrating diverse datasets with different sampling natures further contributing to a more informed understanding of spatial dynamics of marine species.eng
dc.description.sponsorshipUIDP/00013/2020; UIDB/00013/2020; PD/BD/150535/2019; PTDC/MAT-STA/28243/2017; MAR-111.4.1-FEAMPA-00001
dc.identifier.doi10.1016/j.spasta.2025.100930
dc.identifier.issn2211-6753
dc.identifier.urihttp://hdl.handle.net/10400.1/27841
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.relationMarine and Environmental Sciences Centre
dc.relation.ispartofSpatial Statistics
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectSpecies distribution model
dc.subjectIntegrating data sources
dc.subjectPreferential sampling
dc.subjectGeostatiscal modeling
dc.subjectFish data
dc.titleJoint model for zero-inflated data combining fishery-dependent and fishery-independent sourceseng
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleMarine and Environmental Sciences Centre
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04292%2F2020/PT
oaire.citation.startPage100930
oaire.citation.titleSpatial Statistics
oaire.citation.volume70
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameAraújo
person.givenNameGonçalo
person.identifier.orcid0000-0001-5572-3431
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublication04c6e5a8-0c42-49e4-995f-9698c1410826
relation.isAuthorOfPublication.latestForDiscovery04c6e5a8-0c42-49e4-995f-9698c1410826
relation.isProjectOfPublication61d0bac5-8f85-40c7-ac39-0fb64c5ff771
relation.isProjectOfPublication.latestForDiscovery61d0bac5-8f85-40c7-ac39-0fb64c5ff771

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S2211675325000521-main.pdf
Size:
4.09 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: