Repository logo
 
Publication

Ocean surface partitioning strategies using Ocean Colour Remote Sensing: a review

dc.contributor.authorKrug, Lilian
dc.contributor.authorPlatt, T.
dc.contributor.authorSathyendranath, S.
dc.contributor.authorBarbosa, Ana B.
dc.date.accessioned2017-12-21T15:39:33Z
dc.date.available2017-12-21T15:39:33Z
dc.date.issued2017
dc.description.abstractThe ocean surface is organized into regions with distinct properties reflecting the complexity of interactions between environmental forcing and biological responses. The delineation of these functional units, each with unique, homogeneous properties and underlying ecosystem structure and dynamics, can be defined as ocean surface partitioning. The main purposes and applications of ocean partitioning include the evaluation of particular marine environments; generation of more accurate satellite ocean colour products; assimilation of data into biogeochemical and climate models; and establishment of ecosystem-based management practices. This paper reviews the diverse approaches implemented for ocean surface partition into functional units, using ocean colour remote sensing (OCRS) data, including their purposes, criteria, methods and scales. OCRS offers a synoptic, high spatial-temporal resolution, multi-decadal coverage of bio-optical properties, relevant to the applications and value of ocean surface partitioning. In combination with other biotic and/or abiotic data, OCRS-derived data (e.g., chlorophyll-a, optical properties) provide a broad and varied source of information that can be analysed using different delineation methods derived from subjective, expert-based to unsupervised learning approaches (e.g., cluster, fuzzy and empirical orthogonal function analyses). Partition schemes are applied at global to mesoscale spatial coverage, with static (time-invariant) or dynamic (time-varying) representations. A case study, the highly heterogeneous area off SW Iberian Peninsula (NE Atlantic), illustrates how the selection of spatial coverage and temporal representation affects the discrimination of distinct environmental drivers of phytoplankton variability. Advances in operational oceanography and in the subject area of satellite ocean colour, including development of new sensors, algorithms and products, are among the potential benefits from extended use, scope and applications of ocean surface partitioning using OCRS.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.pocean.2017.05.013pt_PT
dc.identifier.otherAUT: ABA00694;
dc.identifier.urihttp://hdl.handle.net/10400.1/10269
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.subjectOcean colour remote sensingpt_PT
dc.subjectSatelite oceanographypt_PT
dc.subjectOcean partitioningpt_PT
dc.subjectPhytoplanktonpt_PT
dc.subjectEcosystem managmentpt_PT
dc.subjectPhytoplanktonpt_PT
dc.subjectIberiapt_PT
dc.titleOcean surface partitioning strategies using Ocean Colour Remote Sensing: a reviewpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage53pt_PT
oaire.citation.startPage41pt_PT
oaire.citation.titleProgress in Oceanographypt_PT
oaire.citation.volume155pt_PT
person.familyNameKrug
person.familyNameBarbosa
person.givenNameLilian
person.givenNameAna
person.identifier.ciencia-id501F-2A75-BBD3
person.identifier.ciencia-idF514-2180-4CF8
person.identifier.orcid0000-0002-0066-7679
person.identifier.orcid0000-0002-7402-246X
person.identifier.scopus-author-id23479793500
person.identifier.scopus-author-id7103244778
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicatione28133b9-1fff-4ce6-8a80-8aace4103fee
relation.isAuthorOfPublication5b72648c-41b5-46c0-9a7f-7fa2f514b973
relation.isAuthorOfPublication.latestForDiscoverye28133b9-1fff-4ce6-8a80-8aace4103fee

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Krug et al 2017 Prog Oceanogr.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.41 KB
Format:
Item-specific license agreed upon to submission
Description: