Name: | Description: | Size: | Format: | |
---|---|---|---|---|
3.04 MB | Adobe PDF |
Advisor(s)
Abstract(s)
In this work a numerical model, which simulates the buildings thermal response and evaluates the indoor environment comfort, in transient conditions, is used in the application of an indoor greenhouse in the energy and thermal comfort performance in a kindergarten school building, in the South of Portugal, in Winter conditions. In the numerical simulation of the kindergarten school building, the 25 compartments, the 498 building main bodies and the 42 windows glasses, as well as two schools and three residential surrounding main buildings, are considered. This numerical model is applied in the evaluation of the kindergarten thermal behavior, using the indoor temperature field, and the occupants thermal comfort levels, using the PMV and PPD indexes. After to be compared the numerical and experimental indoor air temperatures field and identified the indoor thermal uncomfortable spaces, the numerical model is used in the evaluation of the indoor greenhouse performance, in order to increase the indoor air temperature and thermal comfort levels, using solar renewable energy, without increase of the kindergarten energy consumption. It is analyzed in detail the greenhouse ventilation operating time and the warm airflow transport way, using an internal ducts system or a corridor space, from the greenhouse to the indoor coldest spaces.