Publication
Radio Resource Scheduling with Deep Pointer Networks and Reinforcement Learning
dc.contributor.author | Al-Tam, Faroq | |
dc.contributor.author | Mazayev, Andriy | |
dc.contributor.author | Correia, Noélia | |
dc.contributor.author | Rodriguez, J. | |
dc.date.accessioned | 2021-06-24T11:36:03Z | |
dc.date.available | 2021-06-24T11:36:03Z | |
dc.date.issued | 2020 | |
dc.description.abstract | This article presents an artificial intelligence (AI) adaptable solution to handle the radio resource scheduling (RRS) task in 5G networks. RRS is one of the core tasks in radio resource management (RRM) and aims to efficiently allocate frequency domain resources to users. The proposed solution is an advantage pointer critic (APC) deep reinforcement learning (DRL) agent. It is built with a deep pointer network architecture and trained by the policy gradient algorithm. The proposed agent is deployed in a system level simulator and the experimental results demonstrate its adaptability to network dynamics and efficiency when compared to baseline algorithms. | |
dc.description.sponsorship | POCI-01-0145-FEDER-030500 | |
dc.description.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1109/CAMAD50429.2020.9209313 | |
dc.identifier.isbn | 978-1-7281-6339-0 | |
dc.identifier.issn | 2378-4865 | |
dc.identifier.uri | http://hdl.handle.net/10400.1/16612 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | IEEE | |
dc.relation | Center for Electronics, Optoelectronics and Telecommunications | |
dc.relation.ispartofseries | IEEE International Workshop on Computer Aided Modeling and Design of Communication Links and Networks | |
dc.subject | 5G | |
dc.subject | Deep reinforcement learning | |
dc.subject | Radio resource management | |
dc.subject | Radio resource scheduling | |
dc.subject | Pointer network | |
dc.subject | Actor-critic | |
dc.subject.other | Computer Science; Telecommunications | |
dc.title | Radio Resource Scheduling with Deep Pointer Networks and Reinforcement Learning | |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.awardTitle | Center for Electronics, Optoelectronics and Telecommunications | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00631%2F2020/PT | |
oaire.citation.conferencePlace | Pisa, Italy | |
oaire.citation.title | 2020 Ieee 25Th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (Camad) | |
oaire.citation.title | 25Th Ieee International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (Ieee Camad) | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Al-Tam | |
person.familyName | Mazayev | |
person.familyName | Correia | |
person.givenName | Faroq | |
person.givenName | Andriy | |
person.givenName | Noélia | |
person.identifier | R-00G-A33 | |
person.identifier | R-00G-XFD | |
person.identifier | R-000-DJV | |
person.identifier.ciencia-id | 2515-AFE3-525F | |
person.identifier.ciencia-id | D91F-F08D-5380 | |
person.identifier.ciencia-id | DD19-1F35-B804 | |
person.identifier.orcid | 0000-0001-9718-2039 | |
person.identifier.orcid | 0000-0003-0495-9801 | |
person.identifier.orcid | 0000-0001-7051-7193 | |
person.identifier.rid | K-7031-2016 | |
person.identifier.rid | M-3554-2013 | |
person.identifier.scopus-author-id | 55246034700 | |
person.identifier.scopus-author-id | 56565451000 | |
person.identifier.scopus-author-id | 8411596100 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | restrictedAccess | |
rcaap.type | conferenceObject | |
relation.isAuthorOfPublication | 15ac97f4-a867-462d-9fc6-0a47bb2919d3 | |
relation.isAuthorOfPublication | 5bc05e4c-cb79-4954-87e8-ebacb4473268 | |
relation.isAuthorOfPublication | fdbe5057-0478-46cd-9506-caa73ea79d9f | |
relation.isAuthorOfPublication.latestForDiscovery | fdbe5057-0478-46cd-9506-caa73ea79d9f | |
relation.isProjectOfPublication | 6c1217d9-1340-45e8-91d8-e75348854f62 | |
relation.isProjectOfPublication.latestForDiscovery | 6c1217d9-1340-45e8-91d8-e75348854f62 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Radio_Resource_Scheduling_with_Deep_Pointer_Networks_and_Reinforcement_Learning.pdf
- Size:
- 2.78 MB
- Format:
- Adobe Portable Document Format