Name: | Description: | Size: | Format: | |
---|---|---|---|---|
393.78 KB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
We introduce a convolution form, in terms of integration over the unit disc D, for operators on functions f in H(D), which correspond to Taylor expansion multipliers. We demonstrate advantages of the introduced integral representation in the study of mapping properties of such operators. In particular, we prove the Young theorem for Bergman spaces in terms of integrability of the kernel of the convolution. This enables us to refer to the introduced convolutions as Hadamard-Bergman convolution. Another, more important, advantage is the study of mapping properties of a class of such operators in Holder type spaces of holomorphic functions, which in fact is hardly possible when the operator is defined just in terms of multipliers. Moreover, we show that for a class of fractional integral operators such a mapping between Holder spaces is onto. We pay a special attention to explicit integral representation of fractional integration and differentiation.
Description
Keywords
Hadamard-Bergman convolution operators Holder space of holomorphic functions Fractional integro-differentiation 47G10 47B38 46E30
Citation
Publisher
Springer