Logo do repositório
 
A carregar...
Miniatura
Publicação

Neural network models in greenhouse air temperature prediction

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
ferreira 2002.pdf402.13 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

The adequacy of radial basis function neural networks to model the inside air temperature of a hydroponic greenhouse as a function of the outside air temperature and solar radiation, and the inside relative humidity, is addressed. As the model is intended to be incorporated in an environmental control strategy botho--line and on-line methods could be of use to accomplish this task. In this paper known hybrid o--line training methods and on-line learning algorithms are analyzed. An o--line method and its application to on-line learning is proposed. It exploits the linear–non-linear structure found in radial basis function neural networks.

Descrição

Palavras-chave

Radial basis functions Neural networks Greenhouse environmental control Modelling

Contexto Educativo

Citação

Ferreira, P. M.; Faria, E. A.; Ruano, A. E. Neural network models in greenhouse air temperature prediction, Neurocomputing, 43, 1-4, 51-75, 2002.

Projetos de investigação

Unidades organizacionais

Fascículo