Repository logo
 
Publication

Short-term forecasting photovoltaic solar power for home energy management systems

dc.contributor.authorBot, Karol
dc.contributor.authorRuano, Antonio
dc.contributor.authorRuano, Maria
dc.date.accessioned2021-04-12T14:25:04Z
dc.date.available2021-04-12T14:25:04Z
dc.date.issued2021-01-25
dc.date.updated2021-03-26T14:06:06Z
dc.description.abstractAccurate photovoltaic (PV) power forecasting is crucial to achieving massive PV integration in several areas, which is needed to successfully reduce or eliminate carbon dioxide from energy sources. This paper deals with short-term multi-step PV power forecasts used in model-based predictive control for home energy management systems. By employing radial basis function (RBFs) artificial neural networks (ANN), designed using a multi-objective genetic algorithm (MOGA) with data selected by an approximate convex-hull algorithm, it is shown that excellent forecasting results can be obtained. Two case studies are used: a special house located in the USA, and the other a typical residential house situated in the south of Portugal. In the latter case, one-step-ahead values for unscaled root mean square error (RMSE), mean relative error (MRE), normalized mean average error (NMAE), mean absolute percentage error (MAPE) and R<sup>2</sup> of 0.16, 1.27%, 1.22%, 8% and 0.94 were obtained, respectively. These results compare very favorably with existing alternatives found in the literature.pt_PT
dc.description.sponsorshipPrograma Operacional Portugal 2020 and Operational Program CRESC Algarve 2020 grant 01/SAICT/2018. Antonio Ruano acknowledges the support of Fundação para a Ciência e Tecnologia, through IDMEC, under LAETA, grant UIDB/50022/2020.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationInventions 6 (1): 12 (2021)pt_PT
dc.identifier.doi10.3390/inventions6010012pt_PT
dc.identifier.issn2411-5134
dc.identifier.urihttp://hdl.handle.net/10400.1/15367
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectPhotovoltaic power forecastingpt_PT
dc.subjectMulti-objective genetic algorithmspt_PT
dc.subjectArtificial neural networkspt_PT
dc.subjectHome energy management systemspt_PT
dc.titleShort-term forecasting photovoltaic solar power for home energy management systemspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue1pt_PT
oaire.citation.startPage12pt_PT
oaire.citation.titleInventionspt_PT
oaire.citation.volume6pt_PT
person.familyNameRuano
person.familyNameRuano
person.givenNameAntonio
person.givenNameMaria
person.identifier.ciencia-id3B19-9F1C-E2F1
person.identifier.ciencia-id9811-A0DD-D5A5
person.identifier.orcid0000-0001-5904-2166
person.identifier.orcid0000-0002-6308-8666
person.identifier.orcid0000-0002-0014-9257
person.identifier.ridB-4135-2008
person.identifier.ridA-8321-2011
person.identifier.scopus-author-id7004284159
person.identifier.scopus-author-id7004483805
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationbc300719-b790-4ee2-a678-666f2b10a7e7
relation.isAuthorOfPublication13813664-b68b-40aa-97a9-91481a31ebf2
relation.isAuthorOfPublication61fc8492-d73f-46ca-a3a3-4cd762a784e6
relation.isAuthorOfPublication.latestForDiscoverybc300719-b790-4ee2-a678-666f2b10a7e7

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
inventions-06-00012.pdf
Size:
4.25 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: