Name: | Description: | Size: | Format: | |
---|---|---|---|---|
5.04 MB | Adobe PDF |
Advisor(s)
Abstract(s)
Device-free human gesture recognition (HGR) using commercial o the shelf (COTS) Wi-Fi
devices has gained attention with recent advances in wireless technology. HGR recognizes the human
activity performed, by capturing the reflections ofWi-Fi signals from moving humans and storing
them as raw channel state information (CSI) traces. Existing work on HGR applies noise reduction
and transformation to pre-process the raw CSI traces. However, these methods fail to capture
the non-Gaussian information in the raw CSI data due to its limitation to deal with linear signal
representation alone. The proposed higher order statistics-based recognition (HOS-Re) model extracts
higher order statistical (HOS) features from raw CSI traces and selects a robust feature subset for the
recognition task. HOS-Re addresses the limitations in the existing methods, by extracting third order
cumulant features that maximizes the recognition accuracy. Subsequently, feature selection methods
derived from information theory construct a robust and highly informative feature subset, fed as
input to the multilevel support vector machine (SVM) classifier in order to measure the performance.
The proposed methodology is validated using a public database SignFi, consisting of 276 gestures
with 8280 gesture instances, out of which 5520 are from the laboratory and 2760 from the home
environment using a 10 5 cross-validation. HOS-Re achieved an average recognition accuracy of
97.84%, 98.26% and 96.34% for the lab, home and lab + home environment respectively. The average
recognition accuracy for 150 sign gestures with 7500 instances, collected from five di erent users was
96.23% in the laboratory environment.
Description
Keywords
Gesture recognition CSI Wi-Fi HOS Cumulants Mutual information SVM
Citation
Publisher
MDPI