Repository logo
 
Publication

Local grand Lebesgue spaces on quasi-metric measure spaces and some applications

dc.contributor.authorRafeiro, Humberto
dc.contributor.authorSamko, Stefan
dc.contributor.authorUmarkhadzhiev, Salaudin
dc.date.accessioned2022-11-09T09:31:31Z
dc.date.available2022-11-09T09:31:31Z
dc.date.issued2022
dc.description.abstractWe introduce local grand Lebesgue spaces, over a quasi-metric measure space (X, d, mu), where the Lebesgue space is "aggrandized" not everywhere but only at a given closed set F of measure zero. We show that such spaces coincide for different choices of aggrandizers if their Matuszewska-Orlicz indices are positive. Within the framework of such local grand Lebesgue spaces, we study the maximal operator, singular operators with standard kernel, and potential type operators. Finally, we give an application to Dirichlet problem for the Poisson equation, taking F as the boundary of the domain.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1007/s11117-022-00915-zpt_PT
dc.identifier.issn1385-1292
dc.identifier.urihttp://hdl.handle.net/10400.1/18479
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringerpt_PT
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectGrand Lebesgue spacespt_PT
dc.subjectMaximal functionpt_PT
dc.subjectSingular integralspt_PT
dc.subjectRiesz potentialpt_PT
dc.titleLocal grand Lebesgue spaces on quasi-metric measure spaces and some applicationspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue3pt_PT
oaire.citation.titlePositivitypt_PT
oaire.citation.volume26pt_PT
person.familyNameSamko
person.givenNameStefan
person.identifier.orcid0000-0002-8022-2863
person.identifier.ridM-3726-2013
person.identifier.scopus-author-id6603416048
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4
relation.isAuthorOfPublication.latestForDiscovery7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
s11117-022-00915-z.pdf
Size:
341.47 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: