Repository logo
 
Publication

Coherent state transforms for spaces of connections

dc.contributor.authorAshtekar, A
dc.contributor.authorLewandowski, J
dc.contributor.authorMarolf, D
dc.contributor.authorMourao, J
dc.contributor.authorThiemann, T
dc.date.accessioned2018-12-07T14:53:00Z
dc.date.available2018-12-07T14:53:00Z
dc.date.issued1996-02
dc.description.abstractThe Segal-Bargmann transform plays an important role in quantum theories of linear fields. Recently, Hall obtained a non-linear analog of this transform for quantum mechanics on Lie groups. Given a compact, connected Lie group G with its normalized Haar measure mu(H), the Hall transform is an isometric isomorphism hem L(2)(G, mu(H)) to H(G(C)) boolean AND L(2)(G(C), v), where G(C) the complexification of G, H(G(C)) the space of holomorphic functions on G(C), and v an appropriate heat-kernel measure on G(C). We extend the Hall transform to the infinite dimensional context of non-Abelian gauge theories by replacing the Lie group G by (a certain extension of) the space A/g of connections module gauge transformations. The resulting ''coherent state transform'' provides a holomorphic representation of the holonomy C* algebra of real gauge fields. This representation is expected to play a key role in a non-perturbative, canonical approach to quantum gravity in 4 dimensions. (C) 1996 Academic Press, Inc.
dc.description.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1006/jfan.1996.0018
dc.identifier.issn0022-1236
dc.identifier.urihttp://hdl.handle.net/10400.1/11308
dc.language.isoeng
dc.peerreviewedyes
dc.publisherAcademic Press Inc Jnl-Comp Subscriptions
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleCoherent state transforms for spaces of connections
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage551
oaire.citation.issue2
oaire.citation.startPage519
oaire.citation.titleJournal of Functional Analysis
oaire.citation.volume135
rcaap.rightsopenAccess
rcaap.typearticle

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
H11308.pdf
Size:
1.1 MB
Format:
Adobe Portable Document Format