Publication
Simple transitive 2-representations of small quotients of Soergel bimodules
dc.contributor.author | Kildetoft, Tobias | |
dc.contributor.author | Mackaay, Marco | |
dc.contributor.author | Mazorchuk, Volodymyr | |
dc.contributor.author | Zimmermann, Jakob | |
dc.date.accessioned | 2021-02-16T16:07:33Z | |
dc.date.available | 2021-02-16T16:07:33Z | |
dc.date.issued | 2018 | |
dc.description.abstract | In all finite Coxeter types but I-2(12), I-2(18), and I-2(30), we classify simple transitive 2-representations for the quotient of the 2-category of Soergel bimodules over the coinvariant algebra which is associated with the two-sided cell that is the closest one to the two-sided cell containing the identity element. It turns out that, in most of the cases, simple transitive 2-representations are exhausted by cell 2-representations. However, in Coxeter types I-2(2k), where k >= 3, there exist simple transitive 2-representations which are not equivalent to cell 2-representations. | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1090/tran/7456 | pt_PT |
dc.identifier.issn | 0002-9947 | |
dc.identifier.uri | http://hdl.handle.net/10400.1/15107 | |
dc.language.iso | eng | pt_PT |
dc.peerreviewed | yes | pt_PT |
dc.publisher | American Mathematical Society | pt_PT |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | pt_PT |
dc.subject | Polynomials | pt_PT |
dc.subject | Categories | pt_PT |
dc.subject | Cells | pt_PT |
dc.title | Simple transitive 2-representations of small quotients of Soergel bimodules | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.endPage | 5590 | pt_PT |
oaire.citation.issue | 8 | pt_PT |
oaire.citation.startPage | 5551 | pt_PT |
oaire.citation.title | Transactions of the American Mathematical Society | pt_PT |
oaire.citation.volume | 371 | pt_PT |
person.familyName | MACKAAIJ | |
person.givenName | MARCO | |
person.identifier.ciencia-id | F810-F5CB-9F35 | |
person.identifier.orcid | 0000-0001-9807-6991 | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | 62310e63-1319-4bf3-87c8-1f6790d9f190 | |
relation.isAuthorOfPublication.latestForDiscovery | 62310e63-1319-4bf3-87c8-1f6790d9f190 |
Files
Original bundle
1 - 1 of 1