Repository logo
 
Publication

Application of machine learning to cluster hotel booking curves for hotel demand forecasting

dc.contributor.authorViverit, Luciano
dc.contributor.authorHeo, Cindy Yoonjoung
dc.contributor.authorPereira, Luis
dc.contributor.authorTiana, Guido
dc.date.accessioned2023-04-27T09:46:58Z
dc.date.available2023-04-27T09:46:58Z
dc.date.issued2023
dc.description.abstractAccurate demand forecasting is integral for data-driven revenue management decisions of hotels, but an un-precedented demand environment caused by COVID-19 pandemic has made the forecasting process more difficult. This study aims to propose a new approach for daily hotel demand forecasting by using clusters of stay dates generated from historical booking data. This new approach is fundamentally different from traditional forecasting approaches for hotels that assume the booking curves and patterns tend to be similar during the trailing period approach. In this study, historical booking curves are clustered by a machine learning algorithm using an auto-regressive manner and the additive pickup model is used to forecast daily occupancy up to 8 weeks. The efficacy of a new forecasting approach is tested using real hotel booking data of three hotels and results show that forecasts of hotel demand are more accurate when they are generated at cluster-level for all forecasting horizons.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.ijhm.2023.103455pt_PT
dc.identifier.issn0278-4319
dc.identifier.urihttp://hdl.handle.net/10400.1/19493
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationResearch Centre for Tourism, Sustainability and Well-being
dc.subjectHotel demand forecastingpt_PT
dc.subjectMachine learningpt_PT
dc.subjectAdditive pickup modelpt_PT
dc.subjectClustering booking curvespt_PT
dc.titleApplication of machine learning to cluster hotel booking curves for hotel demand forecastingpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch Centre for Tourism, Sustainability and Well-being
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04020%2F2020/PT
oaire.citation.startPage103455pt_PT
oaire.citation.titleInternational Journal of Hospitality Managementpt_PT
oaire.citation.volume111pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameNobre Pereira
person.givenNameLuis
person.identifier.ciencia-id6114-E329-972E
person.identifier.orcid0000-0003-0917-7163
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication090a6604-b604-414b-a8d2-c4dc731b7b51
relation.isAuthorOfPublication.latestForDiscovery090a6604-b604-414b-a8d2-c4dc731b7b51
relation.isProjectOfPublicationfa579efb-63c0-486e-b05d-859542b73647
relation.isProjectOfPublication.latestForDiscoveryfa579efb-63c0-486e-b05d-859542b73647

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S0278431923000294-main.pdf
Size:
1.91 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: