Repository logo
 
Publication

Evolutionary multiobjective neural network models identification: evolving task-optimised models

dc.contributor.authorFerreira, P. M.
dc.contributor.authorRuano, Antonio
dc.date.accessioned2013-01-31T11:52:01Z
dc.date.available2013-01-31T11:52:01Z
dc.date.issued2011
dc.date.updated2013-01-26T16:32:39Z
dc.description.abstractIn the system identification context, neural networks are black-box models, meaning that both their parameters and structure need to be determined from data. Their identification is often done iteratively in an ad-hoc fashion focusing the first aspect. Frequently the selection of inputs, model structure, and model order are underlooked subjects by practitioners, because the number of possibilities is commonly huge, thus leaving the designer at the hands of the curse of dimensionality. Moreover, the design criteria may include multiple conflicting objectives, which gives to the model identification problem a multiobjective combinatorial optimisation character. Evolutionary multiobjective optimisation algorithms are particularly well suited to address this problem because they can evolve optimised model structures that meet pre-specified design criteria in acceptable computing time. In this article the subject is reviewed, the authors present their approach to the problem in the context of identifying neural network models for time-series prediction and for classification purposes, and two application case studies are described, one in each of these fields.por
dc.identifier.citationFerreira, Pedro M.; Ruano, António E. Evolutionary Multiobjective Neural Network Models Identification: Evolving Task-Optimised Models, In New Advances in Intelligent Signal Processing, 21-53, ISBN: 978-3-642-11738-1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.por
dc.identifier.doihttp://dx.doi.org/10.1007/978-3-642-11739-8_2
dc.identifier.isbn978-3-642-11738-1
dc.identifier.otherAUT: ARU00698;
dc.identifier.urihttp://hdl.handle.net/10400.1/2164
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherSpringer Berlin Heidelbergpor
dc.titleEvolutionary multiobjective neural network models identification: evolving task-optimised modelspor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage53por
oaire.citation.startPage21por
oaire.citation.titleNew Advances in Intelligent Signal Processingpor
person.familyNameRuano
person.givenNameAntonio
person.identifier.orcid0000-0002-6308-8666
person.identifier.ridB-4135-2008
person.identifier.scopus-author-id7004284159
rcaap.rightsrestrictedAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication13813664-b68b-40aa-97a9-91481a31ebf2
relation.isAuthorOfPublication.latestForDiscovery13813664-b68b-40aa-97a9-91481a31ebf2

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
naisp.pdf
Size:
2.72 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: