Repository logo
 
Publication

MEC: A Mesoscale events classifier for oceanographic imagery

dc.contributor.authorPieri, Gabriele
dc.contributor.authorJaneiro, João
dc.contributor.authorMartins, Flávio
dc.contributor.authorPapini, Oscar
dc.contributor.authorReggiannini, Marco
dc.date.accessioned2023-02-13T10:30:39Z
dc.date.available2023-02-13T10:30:39Z
dc.date.issued2023-01-25
dc.date.updated2023-02-10T14:28:33Z
dc.description.abstractThe observation of the sea through remote sensing technologies plays a fundamentalan role in understanding the state of health of marine fauna species and their behaviour. Mesoscale phenomena, such as upwelling, countercurrents, and filaments, are essential processes to be analysed because their occurrence involves, among other things, variations in the density of nutrients, which, in turn, influence the biological parameters of the habitat. Indeed, there is a connection between the biogeochemical and physical processes that occur within a biological system and the variations observed in its faunal populations. This paper concerns the proposal of an automatic classification system, namely the Mesoscale Events Classifier, dedicated to the recognition of marine mesoscale events. The proposed system is devoted to the study of these phenomena through the analysis of sea surface temperature images captured by satellite missions, such as EUMETSAT’s Metop and NASA’s Earth Observing System programmes. The classification of these images is obtained through (i) a preprocessing stage with the goal to provide a simultaneous representation of the spatial and temporal properties of the data and enhance the salient features of the sought phenomena, (ii) the extraction of temporal and spatial characteristics from the data and, finally, (iii) the application of a set of rules to discriminate between different observed scenarios. The results presented in this work were obtained by applying the proposed approach to images acquired in the southwestern region of the Iberian peninsula.pt_PT
dc.description.sponsorshipLA/P/0069/2020
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationApplied Sciences 13 (3): 1565 (2023)pt_PT
dc.identifier.doi10.3390/app13031565pt_PT
dc.identifier.eissn2076-3417
dc.identifier.urihttp://hdl.handle.net/10400.1/19064
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationCentre for Marine and Environmental Research (CIMA)
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectImage processingpt_PT
dc.subjectRemote sensingpt_PT
dc.subjectMesoscale events classifierpt_PT
dc.subjectMesoscale patternspt_PT
dc.subjectSea surface temperaturept_PT
dc.subjectMachine learningpt_PT
dc.subjectClimate changept_PT
dc.titleMEC: A Mesoscale events classifier for oceanographic imagerypt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCentre for Marine and Environmental Research (CIMA)
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00350%2F2020/PT
oaire.citation.issue3pt_PT
oaire.citation.startPage1565pt_PT
oaire.citation.titleApplied Sciencespt_PT
oaire.citation.volume13pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameJaneiro
person.familyNameMartins
person.givenNameJoão
person.givenNameFlávio
person.identifier547684
person.identifier.ciencia-id0A14-0FA9-3278
person.identifier.ciencia-id6711-E990-FFD9
person.identifier.orcid0000-0002-6241-8520
person.identifier.orcid0000-0002-9863-6255
person.identifier.ridP-7833-2015
person.identifier.ridU-2673-2018
person.identifier.scopus-author-id23667713600
person.identifier.scopus-author-id7006504350
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationbe11809e-2280-4e40-a998-ad982b821e7f
relation.isAuthorOfPublication1a3bc5b3-6032-43b3-880e-1a551ba84d02
relation.isAuthorOfPublication.latestForDiscoverybe11809e-2280-4e40-a998-ad982b821e7f
relation.isProjectOfPublication607b395b-b4ff-4b27-b6e4-779cdea78d97
relation.isProjectOfPublication.latestForDiscovery607b395b-b4ff-4b27-b6e4-779cdea78d97

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
applsci-13-01565-v3.pdf
Size:
2.64 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: