Repository logo
 
Publication

Mixed norm spaces of analytic functions as spaces of generalized fractional derivatives of functions in hardy type spaces

dc.contributor.authorKarapetyants, Alexey
dc.contributor.authorSamko, Stefan
dc.date.accessioned2018-12-07T14:58:03Z
dc.date.available2018-12-07T14:58:03Z
dc.date.issued2017-10
dc.description.abstractThe aim of the paper is twofold. First, we present a new general approach to the definition of a class of mixed norm spaces of analytic functions A(q;X)(D), 1 <= q < infinity on the unit disc D. We study a problem of boundedness of Bergman projection in this general setting. Second, we apply this general approach for the new concrete cases when X is either Orlicz space or generalized Morrey space, or generalized complementary Morrey space. In general, such introduced spaces are the spaces of functions which are in a sense the generalized Hadamard type derivatives of analytic functions having l(q) summable Taylor coefficients.
dc.description.sponsorshipRussian Fund of Basic Research [15-01-02732]; SFEDU grant [07/2017-31]
dc.description.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1515/fca-2017-0059
dc.identifier.issn1311-0454
dc.identifier.issn1314-2224
dc.identifier.urihttp://hdl.handle.net/10400.1/11832
dc.language.isoeng
dc.peerreviewedyes
dc.publisherWalter De Gruyter Gmbh
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectBergman projections
dc.subjectUnit Disc
dc.subjectOperators
dc.subjectInequalities
dc.subjectBoundedness
dc.subjectDuality
dc.titleMixed norm spaces of analytic functions as spaces of generalized fractional derivatives of functions in hardy type spaces
dc.typejournal article
dspace.entity.typePublication
oaire.citation.conferencePlaceBulgarian Acad Sci, Inst Math & Informat, Sofia, BULGARIA
oaire.citation.endPage1130
oaire.citation.issue5
oaire.citation.startPage1106
oaire.citation.titleFractional Calculus and Applied Analysis
oaire.citation.title8Th International Conference on Transform Methods and Special Function (Tmsf)
oaire.citation.volume20
person.familyNameSamko
person.givenNameStefan
person.identifier.orcid0000-0002-8022-2863
person.identifier.ridM-3726-2013
person.identifier.scopus-author-id6603416048
rcaap.rightsopenAccess
rcaap.typearticle
relation.isAuthorOfPublication7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4
relation.isAuthorOfPublication.latestForDiscovery7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
handle11832.pdf
Size:
406.82 KB
Format:
Adobe Portable Document Format