Repository logo
 
Publication

Sex determination from the femur in Portuguese populations with classical and machine-learning classifiers

dc.contributor.authorCurate, Francisco
dc.contributor.authorUmbelino, Cláudia
dc.contributor.authorPerinha, A.
dc.contributor.authorNogueira, C.
dc.contributor.authorSilva, A. M.
dc.contributor.authorCunha, E.
dc.date.accessioned2019-11-20T15:07:13Z
dc.date.available2019-11-20T15:07:13Z
dc.date.issued2017-11
dc.description.abstractThe assessment of sex is of paramount importance in the establishment of the biological profile of a skeletal individual. Femoral relevance for sex estimation is indisputable, particularly when other exceedingly dimorphic skeletal regions are missing. As such, this study intended to generate population-specific osteometric models for the estimation of sex with the femur and to compare the accuracy of the models obtained through classical and machine-learning classifiers. A set of 15 standard femoral measurements was acquired in a training sample (100 females; 100 males) from the Coimbra Identified Skeletal Collection (University of Coimbra, Portugal) and models for sex classification were produced with logistic regression (LR), linear discriminant analysis (LDA), support vector machines (SVM), and reduce error pruning trees (REPTree). Under cross-validation, univariable sectioning points generated with REPTree correctly estimated sex in 60.0e87.5% of cases (systematic error ranging from 0.0 to 37.0%), while multivariable models correctly classified sex in 84.0-92.5% of cases (bias from 0.0 to 7.0%). All models were assessed in a holdout sample (24 females; 34 males) from the 21st Century Identified Skeletal Collection (University of Coimbra, Portugal), with an allocation accuracy ranging from 56.9 to 86.2% (bias from 4.4 to 67.0%) in the univariable models, and from 84.5 to 89.7% (bias from 3.7 to 23.3%) in the multivariable models. This study makes available a detailed description of sexual dimorphism in femoral linear dimensions in two Portuguese identified skeletal samples, emphasizing the relevance of the femur for the estimation of sex in skeletal remains in diverse conditions of completeness and preservation. (C) 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
dc.identifier.doi10.1016/j.jflm.2017.08.011
dc.identifier.issn1752-928X
dc.identifier.issn1532-2009
dc.identifier.urihttp://hdl.handle.net/10400.1/12936
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier Sci Ltd
dc.subjectSpanish population
dc.subjectProximal Femur
dc.subjectRadiographs
dc.subjectSample
dc.subjectTibia
dc.titleSex determination from the femur in Portuguese populations with classical and machine-learning classifiers
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F74015%2F2010/PT
oaire.citation.endPage81
oaire.citation.startPage75
oaire.citation.titleJournal of Forensic and Legal Medicine
oaire.citation.volume52
oaire.fundingStreamSFRH
person.familyNameTaborda Curate
person.familyNameUmbelino
person.givenNameJosé Francisco
person.givenNameCláudia
person.identifierhttps://scholar.google.pt/citations?user=rG909IQAAAAJ&hl=pt-PT
person.identifier.ciencia-idEF1B-4B08-5982
person.identifier.ciencia-id5710-349E-8BEE
person.identifier.orcid0000-0002-0480-209X
person.identifier.orcid0000-0003-4834-7364
person.identifier.ridM-2783-2013
person.identifier.scopus-author-id7801372595
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccess
rcaap.typearticle
relation.isAuthorOfPublication255b6420-8d4b-438d-b232-6ba3d1a1248c
relation.isAuthorOfPublicatione077a563-3a7d-4a7a-b565-e49600d3d46d
relation.isAuthorOfPublication.latestForDiscovery255b6420-8d4b-438d-b232-6ba3d1a1248c
relation.isProjectOfPublication3c733ef8-a5e9-48a2-803a-049ada08b4de
relation.isProjectOfPublication.latestForDiscovery3c733ef8-a5e9-48a2-803a-049ada08b4de

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Sex determination from the femur - 12936.pdf
Size:
689.06 KB
Format:
Adobe Portable Document Format