Publication
Deep PC-MAC: a deep reinforcement learning pointer-critic media access protocol
dc.contributor.author | Al-Tam, Faroq | |
dc.contributor.author | Mazayev, Andriy | |
dc.contributor.author | Correia, Noélia | |
dc.contributor.author | Rodriguez, J. | |
dc.date.accessioned | 2021-06-24T11:36:03Z | |
dc.date.available | 2021-06-24T11:36:03Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Developing artificial intelligence (AI) solutions for communication problems is one of the hottest topics nowadays. This article presents Deep PC-MAC, a novel deep reinforcement learning (DRL) solution to solve the fair coexistence problem (FCP) between heterogeneous nodes in the unlicensed bands. It is based on a hybrid architecture between pointer networks (Ptr-nets) and advantage actor-critic (A2C), i.e., pointer-critic architecture. The proposed model allows base stations to fairly share unlicensed bands with incumbent nodes. It jointly protects the incumbent nodes from spectrum starvation and improves key-performance indicators (KPIs). Deep PC-MAC is trained from scratch with zero-knowledge about FCP and experimental results demonstrate its efficiency when compared to a baseline method. | |
dc.description.sponsorship | POCI-01-0145FEDER-030500 | |
dc.description.version | info:eu-repo/semantics/publishedVersion | |
dc.identifier.isbn | 978-1-7281-6339-0 | |
dc.identifier.issn | 2378-4865 | |
dc.identifier.uri | http://hdl.handle.net/10400.1/16611 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | IEEE | |
dc.relation | Center for Electronics, Optoelectronics and Telecommunications | |
dc.relation.ispartofseries | IEEE International Workshop on Computer Aided Modeling and Design of Communication Links and Networks | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | 5G | |
dc.subject | Deep reinforcement learning | |
dc.subject | MAC | |
dc.subject | Unlicensed bands | |
dc.subject | CSMA/CA | |
dc.subject | LTE-LAA | |
dc.subject | LTE-U | |
dc.subject | WiFi | |
dc.subject | Coexistence | |
dc.subject.other | Computer Science; Telecommunications | |
dc.title | Deep PC-MAC: a deep reinforcement learning pointer-critic media access protocol | |
dc.type | conference object | |
dspace.entity.type | Publication | |
oaire.awardTitle | Center for Electronics, Optoelectronics and Telecommunications | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00631%2F2020/PT | |
oaire.citation.conferencePlace | Pisa, Italy | |
oaire.citation.title | 2020 Ieee 25Th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (Camad) | |
oaire.citation.title | 25Th Ieee International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (Ieee Camad) | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Al-Tam | |
person.familyName | Mazayev | |
person.familyName | Correia | |
person.givenName | Faroq | |
person.givenName | Andriy | |
person.givenName | Noélia | |
person.identifier | R-00G-A33 | |
person.identifier | R-00G-XFD | |
person.identifier | R-000-DJV | |
person.identifier.ciencia-id | 2515-AFE3-525F | |
person.identifier.ciencia-id | D91F-F08D-5380 | |
person.identifier.ciencia-id | DD19-1F35-B804 | |
person.identifier.orcid | 0000-0001-9718-2039 | |
person.identifier.orcid | 0000-0003-0495-9801 | |
person.identifier.orcid | 0000-0001-7051-7193 | |
person.identifier.rid | K-7031-2016 | |
person.identifier.rid | M-3554-2013 | |
person.identifier.scopus-author-id | 55246034700 | |
person.identifier.scopus-author-id | 56565451000 | |
person.identifier.scopus-author-id | 8411596100 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | restrictedAccess | |
rcaap.type | conferenceObject | |
relation.isAuthorOfPublication | 15ac97f4-a867-462d-9fc6-0a47bb2919d3 | |
relation.isAuthorOfPublication | 5bc05e4c-cb79-4954-87e8-ebacb4473268 | |
relation.isAuthorOfPublication | fdbe5057-0478-46cd-9506-caa73ea79d9f | |
relation.isAuthorOfPublication.latestForDiscovery | 5bc05e4c-cb79-4954-87e8-ebacb4473268 | |
relation.isProjectOfPublication | 6c1217d9-1340-45e8-91d8-e75348854f62 | |
relation.isProjectOfPublication.latestForDiscovery | 6c1217d9-1340-45e8-91d8-e75348854f62 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Deep PC-MAC A deep reinforcement learning pointer-critic media access protocol.pdf
- Size:
- 1.8 MB
- Format:
- Adobe Portable Document Format