Repository logo
 
Publication

Aggrandization of spaces of holomorphic functions reduces to aggrandization on the boundary

dc.contributor.authorKarapetyants, Alexey
dc.contributor.authorSamko, Stefan
dc.date.accessioned2025-02-27T14:33:33Z
dc.date.available2025-02-27T14:33:33Z
dc.date.issued2024-12
dc.description.abstractWe show that grand spaces of holomorphic functions may be equivalently defined in terms of aggrandization related only to the boundary. We base ourselves on recent studies of the so-called local aggrandization of Lebesgue spaces and extent this approach to the case of arbitrary Banach spaces of functions on metric spaces. We apply this approach to prove, in the case of Bergman and Bergman-Morrey spaces on the unit disk, that these grand spaces may be equivalently defined as grand spaces with weighted aggrandization on the boundary.eng
dc.description.sponsorship075-02-2024-1427
dc.identifier.doi10.1134/s000143462411035x
dc.identifier.eissn1573-8876
dc.identifier.issn0001-4346
dc.identifier.urihttp://hdl.handle.net/10400.1/26830
dc.language.isoeng
dc.peerreviewedyes
dc.publisherSpringer
dc.relation.ispartofMathematical Notes
dc.rights.uriN/A
dc.subjectAggrandization of spaces
dc.subjectSpaces of holomorphic functions
dc.subjectGrand lebesgue and morrey type spaces
dc.titleAggrandization of spaces of holomorphic functions reduces to aggrandization on the boundaryeng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage1305
oaire.citation.issue5-6
oaire.citation.startPage1292
oaire.citation.titleMathematical Notes
oaire.citation.volume116
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameSamko
person.givenNameStefan
person.identifier.orcid0000-0002-8022-2863
person.identifier.ridM-3726-2013
person.identifier.scopus-author-id6603416048
relation.isAuthorOfPublication7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4
relation.isAuthorOfPublication.latestForDiscovery7c853bfc-1d1b-4bd0-9b94-1005fafbd6a4

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
S000143462411035X.pdf
Size:
658.44 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: