Name: | Description: | Size: | Format: | |
---|---|---|---|---|
2.39 MB | Adobe PDF |
Advisor(s)
Abstract(s)
Coconut coir was explored as economical sorbent for the adsorptive removal of lanthanum ion (La3+) from aqueous media. Both column and batch studies were conducted to assess the effective removal of La3+ on coconut coir by optimizing different adsorption variables such as bed height, flow rate, pH, adsorbent dosage, shaking time, initial metal concentration, and temperature. Characterization of coconut coir was carried out by scanning electron microscopy (SEM), FT-IR, and BET studies prior and subsequent to adsorption. The effective removal of La3+ was defined in certain media by the pHzpc, which was found to be 5.7 +/- 0.1. The optimum 94.04 +/- 0.2% adsorption of La3+ on coconut coir was observed by shaking 4 cm3 of 90 mol/L solution of La3+ with 0.3 g adsorbent dose for 10 min at neutral pH. The Langmuir adsorption capacity was found to be qe=2.88 +/- 0.02 mg g-1 and Freundlich adsorption capacity was KF =0.1294 +/- 0.03 mg g-1. The pseudo-second-order kinetic and Langmuir isotherm models provided an ideal fit for the adsorption process. The column analysis also showed direct correlation of bed height and initial metal concentration with % adsorption, while % removal decreased as flow rate increased. The high regression coefficient values confirm that the BDST model is in line with the test data. Van't Hoff equation proved the spontaneous endothermic process. Effect of external ions and desorption are also studied. The results suggest that coconut coir is a cost effective and efficient bio-sorbent for La3+ ion adsorption from aqueous solution.
Description
Keywords
Coconut coir Adsorption lanthanum ion Isotherms Kinetics Thermodynamics
Citation
Publisher
Taylor and Francis Group