Publication
Analog computers and recursive functions over the reals
dc.contributor.author | Graça, Daniel | |
dc.contributor.author | Costa, José Felix | |
dc.date.accessioned | 2012-04-13T08:10:04Z | |
dc.date.available | 2012-04-13T08:10:04Z | |
dc.date.issued | 2003 | |
dc.description.abstract | This paper revisits one of the rst models of analog computation, the General Purpose Analog Computer (GPAC). In particular, we restrict our attention to the improved model presented in [11] and we show that it can be further re ned. With this we prove the following: (i) the previous model can be simpli ed; (ii) it admits extensions having close connec- tions with the class of smooth continuous time dynamical systems. As a consequence, we conclude that some of these extensions achieve Turing universality. Finally, it is shown that if we introduce a new notion of computability for the GPAC, based on ideas from computable analysis, then one can compute transcendentally transcendental functions such as the Gamma function or Riemann's Zeta function. | por |
dc.identifier.other | AUT: DGR01772; | |
dc.identifier.uri | http://hdl.handle.net/10400.1/1007 | |
dc.language.iso | eng | por |
dc.peerreviewed | yes | por |
dc.relation.publisherversion | http://dx.doi.org/10.1016/S0885-064X(03)00034-7 | por |
dc.title | Analog computers and recursive functions over the reals | por |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.endPage | 664 | por |
oaire.citation.issue | 19 | por |
oaire.citation.startPage | 644 | por |
oaire.citation.title | Journal of Complexity | por |
person.familyName | Graça | |
person.givenName | Daniel | |
person.identifier.ciencia-id | 2D11-56DE-3F11 | |
person.identifier.orcid | 0000-0002-0330-833X | |
person.identifier.rid | D-2335-2011 | |
person.identifier.scopus-author-id | 8882791800 | |
rcaap.rights | openAccess | por |
rcaap.type | article | por |
relation.isAuthorOfPublication | ba0c1461-5d2d-4f06-b648-df4a1a505bdf | |
relation.isAuthorOfPublication.latestForDiscovery | ba0c1461-5d2d-4f06-b648-df4a1a505bdf |