Publication
Antibody selection strategies and their impact in predicting clinical malaria based on multi-sera data
dc.contributor.author | Fonseca, André | |
dc.contributor.author | Spytek, Mikolaj | |
dc.contributor.author | Biecek, Przemysław | |
dc.contributor.author | Cordeiro, Clara | |
dc.contributor.author | Sepúlveda, Nuno | |
dc.date.accessioned | 2024-02-08T10:32:26Z | |
dc.date.available | 2024-02-08T10:32:26Z | |
dc.date.issued | 2024-01-25 | |
dc.date.updated | 2024-02-01T04:30:10Z | |
dc.description.abstract | Nowadays, the chance of discovering the best antibody candidates for predicting clinical malaria has notably increased due to the availability of multi-sera data. The analysis of these data is typically divided into a feature selection phase followed by a predictive one where several models are constructed for predicting the outcome of interest. A key question in the analysis is to determine which antibodies should be included in the predictive stage and whether they should be included in the original or a transformed scale (i.e. binary/dichotomized). | pt_PT |
dc.description.sponsorship | Grant ref.: PPN/ULM/2020/1/00069/U/00001 | pt_PT |
dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
dc.identifier.doi | 10.1186/s13040-024-00354-4 | pt_PT |
dc.identifier.eissn | 1756-0381 | |
dc.identifier.uri | http://hdl.handle.net/10400.1/20396 | |
dc.language.iso | eng | pt_PT |
dc.language.rfc3066 | en | |
dc.peerreviewed | yes | pt_PT |
dc.publisher | BMC | pt_PT |
dc.relation | Analysis of high-throughput antibody data for better understanding of immunogenetics and epidemiology of malaria | |
dc.relation | Centre of Statistics and its Applications | |
dc.rights.holder | The Author(s) | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | pt_PT |
dc.subject | Multivariate serological data | pt_PT |
dc.subject | Super learner | pt_PT |
dc.subject | Statistical modelling | pt_PT |
dc.subject | Malaria outcome prediction | pt_PT |
dc.subject | Random forest | pt_PT |
dc.title | Antibody selection strategies and their impact in predicting clinical malaria based on multi-sera data | pt_PT |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Analysis of high-throughput antibody data for better understanding of immunogenetics and epidemiology of malaria | |
oaire.awardTitle | Centre of Statistics and its Applications | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/OE/SFRH%2FBD%2F147629%2F2019/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00006%2F2020/PT | |
oaire.citation.issue | 1 | pt_PT |
oaire.citation.startPage | 2 | pt_PT |
oaire.citation.title | BioData Mining | pt_PT |
oaire.citation.volume | 17 | pt_PT |
oaire.fundingStream | OE | |
oaire.fundingStream | 6817 - DCRRNI ID | |
person.familyName | Fonseca | |
person.familyName | Henrique Cordeiro | |
person.givenName | André Filipe Afonso de Sousa | |
person.givenName | Clara Maria | |
person.identifier.ciencia-id | 0B1D-8695-6ADB | |
person.identifier.ciencia-id | C71E-21A1-E882 | |
person.identifier.orcid | 0000-0002-1026-6078 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
rcaap.rights | openAccess | pt_PT |
rcaap.type | article | pt_PT |
relation.isAuthorOfPublication | c242bab5-7d06-4b31-9fae-98447f5e2b96 | |
relation.isAuthorOfPublication | 7e0bbaff-c584-461a-84e2-54f2a6c15876 | |
relation.isAuthorOfPublication.latestForDiscovery | c242bab5-7d06-4b31-9fae-98447f5e2b96 | |
relation.isProjectOfPublication | 7187315f-98e6-4671-9731-fc2bea229681 | |
relation.isProjectOfPublication | 100e6d17-2f76-4282-b864-d0f887b34243 | |
relation.isProjectOfPublication.latestForDiscovery | 100e6d17-2f76-4282-b864-d0f887b34243 |