Repository logo
 
Publication

When hillclimbers beat genetic algorithms in multimodal optimization

dc.contributor.authorLobo, F.J.
dc.contributor.authorBazargani, Mosab
dc.date.accessioned2023-03-15T11:08:46Z
dc.date.available2023-03-15T11:08:46Z
dc.date.issued2015-04-26
dc.description.abstractThis paper investigates the performance of multistart next ascent hillclimbing and well-known evolutionary algorithms incorporating diversity preservation techniques on instances of the multimodal problem generator. This generator induces a class of problems in the bitstringdomain which is interesting to study from a theoretical perspective in the context of multimodal optimization, as it is a generalization of the classical OneMax and TwoMax functions for an arbitrary number of peaks. An average-case runtime analysis for multistart next ascent hill-climbing is presented for uniformly distributed equal-height instances of this class of problems. It is shown empirically that conventional niching and mating restriction techniques incorporated in an evolutionary algorithm are not sufficient to make them competitive with the hillclimbing strategy. We conjecture the reason for this behaviour is the lack of structure in the space of local optima on instances of this problem class, which makes an optimization algorithm unable to exploit information from one optimum to infer where another optimum might be. When no such structure exist, it seems that the best strategy for discovering all optima is a brute-force one. Overall, our study gives insights with respect to the adequacy of hillclimbers and evolutionary algorithms for multimodal optimization, depending on properties of the fitness landscape.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1162/evco_a_00312pt_PT
dc.identifier.eissn1530-9304
dc.identifier.urihttp://hdl.handle.net/10400.1/19254
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMIT Presspt_PT
dc.relationCenter for Environmental and Sustainability Research
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectMultimodal optimizationpt_PT
dc.subjectNichingpt_PT
dc.subjectMultimodal problem generatorpt_PT
dc.subjectHill-climbingpt_PT
dc.subjectEvolutionary algorithmspt_PT
dc.titleWhen hillclimbers beat genetic algorithms in multimodal optimizationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCenter for Environmental and Sustainability Research
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04085%2F2020/PT
oaire.citation.endPage559pt_PT
oaire.citation.issue4pt_PT
oaire.citation.startPage535pt_PT
oaire.citation.titleEvolutionary Computationpt_PT
oaire.citation.volume30pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameLobo
person.givenNameFrancisco José
person.identifier.orcid0000-0002-3294-7202
person.identifier.ridJ-9836-2012
person.identifier.scopus-author-id7007134816
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication6f1a2a3e-5d33-44c1-8382-e82064c6ed67
relation.isAuthorOfPublication.latestForDiscovery6f1a2a3e-5d33-44c1-8382-e82064c6ed67
relation.isProjectOfPublication84911521-6e52-41f6-abed-98015910a175
relation.isProjectOfPublication.latestForDiscovery84911521-6e52-41f6-abed-98015910a175

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
When Hillclimbers Beat Genetic Algorithms in Multimodal Optimization.pdf
Size:
291.63 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: