Repository logo
 
Publication

Accounting for uncertainty in predictions of a marine species: Integrating population genetics to verify past distributions

dc.contributor.authorChefaoui, Rosa
dc.contributor.authorSerrao, Ester
dc.date.accessioned2019-11-20T15:07:21Z
dc.date.available2019-11-20T15:07:21Z
dc.date.issued2017-09
dc.description.abstractWe develop a new perspective on the uncertainties affecting the predictions of coastal species distributions using patterns of genetic diversity to assess the congruence of hindcasted distribution models. We model the niche of the subtidal seagrass Cymodocea nodosa, for which previous phylogeographic findings are used to contrast hypotheses for the Last Glacial Maximum (LGM) in the Mediterranean and adjacent Atlantic coastal regions. We focus on amelioration of sampling bias, and explore the influence of other sources of uncertainty such as the number of variables, Ocean General Circulation Models (OGCMs), and thresholds used. To do that, we test geographical and environmental filtering of presences, and a species-specific weighted filter related to political boundaries for background data. Contrary to our initial hypothesis that reducing sampling bias by means of geographical, environmental or background filtering would enhance predictive power and reliability of the models, none of these approaches consistently improved performance. These counter-intuitive results might be explained by the higher relative occurrence area (ROA) inherent to linear coastal study areas in relation to terrestrial regions, which may cause worse predictions and, thus, higher variability among models. We found that the Ocean General Circulation Models (OGCMs), the threshold and, to a smaller extent, the number of variables used, conditioned greatly the variability of the predictions in both accuracy and geographic range. Despite these uncertainties, all models achieved the goal of identifying long-term persistence regions (glacial refugia) where the highest genetic diversity for Cymodocea nodosa is found nowadays. However, only the CCSM corroborated the hypothesis, raised in previous studies, of a vicariant process in shaping the species' genetic structure. (C) 2017 Elsevier B.V. All rights reserved.
dc.description.sponsorshipFundacao para a Ciencia e a Tecnologia (FCT, Portugal) [SFRH/BPD/85040/2012]
dc.description.sponsorshipPew Foundation (USA)
dc.description.sponsorship[UID/Multi/04326/2013]
dc.description.versioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.ecolmodel.2017.06.006
dc.identifier.issn0304-3800
dc.identifier.issn1872-7026
dc.identifier.urihttp://hdl.handle.net/10400.1/12997
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectDistribution models
dc.subjectGeographic distributions
dc.subjectSampling bias
dc.subjectRange shifts
dc.subjectNiche
dc.subjectPerformance
dc.subjectInsights
dc.subjectRefugia
dc.subjectMaps
dc.subjectAuc
dc.titleAccounting for uncertainty in predictions of a marine species: Integrating population genetics to verify past distributions
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F85040%2F2012/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FMulti%2F04326%2F2013/PT
oaire.citation.endPage239
oaire.citation.startPage229
oaire.citation.titleEcological Modelling
oaire.citation.volume359
oaire.fundingStreamSFRH
oaire.fundingStream5876
person.familyNameChefaoui
person.familyNameSerrao
person.givenNameRosa
person.givenNameEster A.
person.identifierC-6686-2012
person.identifier.ciencia-id5B13-B26E-B1EC
person.identifier.orcid0000-0001-5031-4858
person.identifier.orcid0000-0003-1316-658X
person.identifier.ridD-3906-2009
person.identifier.scopus-author-id8636216500
person.identifier.scopus-author-id7004093604
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccess
rcaap.typearticle
relation.isAuthorOfPublicationb42b598d-1235-47a0-803c-9226c3c63173
relation.isAuthorOfPublication45ccfe90-155c-4d6f-9e86-8f0fd064005f
relation.isAuthorOfPublication.latestForDiscovery45ccfe90-155c-4d6f-9e86-8f0fd064005f
relation.isProjectOfPublication6083d979-7c61-4cf4-bdff-8150ba313f1f
relation.isProjectOfPublication868b4818-3efa-4edb-9202-c464d64fd38f
relation.isProjectOfPublication.latestForDiscovery868b4818-3efa-4edb-9202-c464d64fd38f

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
MS Chefaoui and Serrao 2017_EcoMod.pdf
Size:
256.42 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Appendix A_EcolModel_2017.pdf
Size:
341.37 KB
Format:
Adobe Portable Document Format