Repository logo
 
Publication

Observer-biased bearing condition monitoring: from fault detection to multi-fault classification

dc.contributor.authorLi, Chuan
dc.contributor.authorOliveira, José Valente de
dc.contributor.authorCerrada, Mariela
dc.contributor.authorPacheco, Fannia
dc.contributor.authorCabrera, Diego
dc.contributor.authorSanchez, Vinicio
dc.contributor.authorZurita, Grover
dc.date.accessioned2017-04-07T15:56:52Z
dc.date.available2017-04-07T15:56:52Z
dc.date.issued2016-04
dc.description.abstractBearings are simultaneously a fundamental component and one of the principal causes of failure in rotary machinery. The work focuses on the employment of fuzzy clustering for bearing condition monitoring, i.e., fault detection and classification. The output of a clustering algorithm is a data partition (a set of clusters) which is merely a hypothesis on the structure of the data. This hypothesis requires validation by domain experts. In general, clustering algorithms allow a limited usage of domain knowledge on the cluster formation process. In this study, a novel method allowing for interactive clustering in bearing fault diagnosis is proposed. The method resorts to shrinkage to generalize an otherwise unbiased clustering algorithm into a biased one. In this way, the method provides a natural and intuitive way to control the cluster formation process, allowing for the employment of domain knowledge to guiding it. The domain expert can select a desirable level of granularity ranging from fault detection to classification of a variable number of faults and can select a specific region of the feature space for detailed analysis. Moreover, experimental results under realistic conditions show that the adopted algorithm outperforms the corresponding unbiased algorithm (fuzzy c-means) which is being widely used in this type of problems. (C) 2016 Elsevier Ltd. All rights reserved.
dc.description.sponsorshipGrant number: 1456027
dc.identifier.doi10.1016/j.engappai.2016.01.038
dc.identifier.issn0952-1976
dc.identifier.otherAUT: JVO01594;
dc.identifier.urihttp://hdl.handle.net/10400.1/9548
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.relation.isbasedonWOS:000373410000025
dc.titleObserver-biased bearing condition monitoring: from fault detection to multi-fault classification
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FMulti%2F00631%2F2013/PT
oaire.citation.endPage301
oaire.citation.startPage287
oaire.citation.titleEngineering Applications of Artificial Intelligence
oaire.citation.volume50
oaire.fundingStream5876
person.familyNameLUÍS VALENTE DE OLIVEIRA
person.givenNameJOSÉ
person.identifier.ciencia-id1F12-C1D3-7717
person.identifier.orcid0000-0001-5337-5699
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccess
rcaap.typearticle
relation.isAuthorOfPublicationbb726e73-690c-4a33-822e-c47bdac3035b
relation.isAuthorOfPublication.latestForDiscoverybb726e73-690c-4a33-822e-c47bdac3035b
relation.isProjectOfPublication093114eb-daa5-4e3d-98ce-bebbf4dde4b8
relation.isProjectOfPublication.latestForDiscovery093114eb-daa5-4e3d-98ce-bebbf4dde4b8

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
9548feitopdf.pdf
Size:
3.53 MB
Format:
Adobe Portable Document Format