Repository logo
 
Publication

Symbolic computation applied to cauchy type singular integrals

dc.contributor.authorConceição, Ana C.
dc.contributor.authorPires, Jéssica C.
dc.date.accessioned2022-02-28T15:50:48Z
dc.date.available2022-02-28T15:50:48Z
dc.date.issued2021-12-31
dc.date.updated2022-02-24T14:50:03Z
dc.description.abstractThe development of operator theory is stimulated by the need to solve problems emerging from several fields in mathematics and physics. At the present time, this theory has wide applications in the study of non-linear differential equations, in linear transport theory, in the theory of diffraction of acoustic and electromagnetic waves, in the theory of scattering and of inverse scattering, among others. In our work, we use the computer algebra system <i>Mathematica</i> to implement, for the first time on a computer, analytical algorithms developed by us and others within operator theory. The main goal of this paper is to present new operator theory algorithms related to Cauchy type singular integrals, defined in the unit circle. The design of these algorithms was focused on the possibility of implementing on a computer all the extensive symbolic and numeric calculations present in the algorithms. Several nontrivial examples computed with the algorithms are presented. The corresponding source code of the algorithms has been made available as a supplement to the online edition of this article.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationMathematical and Computational Applications 27 (1): 3 (2022)pt_PT
dc.identifier.doi10.3390/mca27010003pt_PT
dc.identifier.issn2297-8747
dc.identifier.urihttp://hdl.handle.net/10400.1/17619
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationCenter for Functional Analysis, Linear Structures and Applications
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectSymbolic computationpt_PT
dc.subjectOperator theory algorithmspt_PT
dc.subjectCauchy projection operatorspt_PT
dc.subjectSingular integralspt_PT
dc.subjectWolfram Mathematicapt_PT
dc.titleSymbolic computation applied to cauchy type singular integralspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleCenter for Functional Analysis, Linear Structures and Applications
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04721%2F2020/PT
oaire.citation.issue1pt_PT
oaire.citation.startPage3pt_PT
oaire.citation.titleMathematical and Computational Applicationspt_PT
oaire.citation.volume27pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameGuerra
person.givenNameAna
person.identifier.ciencia-id751D-F809-AB4D
person.identifier.orcid0000-0001-7103-3588
person.identifier.ridD-9456-2013
person.identifier.scopus-author-id17345059500
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication7b904311-5ea0-4d96-b7b1-c3e05816817c
relation.isAuthorOfPublication.latestForDiscovery7b904311-5ea0-4d96-b7b1-c3e05816817c
relation.isProjectOfPublication47a61309-2d3a-4619-9ddc-bd6a0b8d5acf
relation.isProjectOfPublication.latestForDiscovery47a61309-2d3a-4619-9ddc-bd6a0b8d5acf

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mca-27-00003-v3.pdf
Size:
1.97 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: