Repository logo
 
Publication

MILP-based model predictive control for home energy management systems: A real case study in Algarve, Portugal

dc.contributor.authorGomes, I.L.R.
dc.contributor.authorRuano, Maria
dc.contributor.authorRuano, Antonio
dc.date.accessioned2023-09-14T16:02:51Z
dc.date.available2023-09-14T16:02:51Z
dc.date.issued2023-02
dc.description.abstractThis paper addresses the development of an innovative home energy management system (HEMS). The presented HEMS relies on a mixed-integer linear programming (MILP)-based model predictive control. The system takes advantage of the powerful formulation capabilities of a MILP-based mathematical pro-gramming problem with the capabilities of model predictive control to optimize, at each sample instant the HEMS operation using a receding-horizon formulation. The system is designed for a residence located in Algarve, Portugal. The results of the presented system are compared with the real experimental results obtained by a commercial PV-battery management system. Additionally, an analysis of the system???s per-formance is conducted, in terms of operation planning for 2021 market prices compared to 2022 prices, where there was a significant rise of buying price due to the energy world context. In all simulations per-formed, it is verified that the MILP-based model predictive control presents better results, with statistical relevance. CO 2023 Elsevier B.V. All rights reserved.pt_PT
dc.description.sponsorshipGrant numbers 39578/2018 and 72581/2020;pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1016/j.enbuild.2023.112774pt_PT
dc.identifier.eissn1872-6178
dc.identifier.urihttp://hdl.handle.net/10400.1/19988
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevierpt_PT
dc.relationAssociate Laboratory of Energy, Transports and Aeronautics
dc.subjectHome energy management systempt_PT
dc.subjectHEMSpt_PT
dc.subjectModel predictive controlpt_PT
dc.subjectMixed-integer linear programmingpt_PT
dc.subjectEnergy storagept_PT
dc.subjectRenewable energypt_PT
dc.subjectDemand responsept_PT
dc.titleMILP-based model predictive control for home energy management systems: A real case study in Algarve, Portugalpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleAssociate Laboratory of Energy, Transports and Aeronautics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50022%2F2020/PT
oaire.citation.startPage112774pt_PT
oaire.citation.titleEnergy and Buildingspt_PT
oaire.citation.volume281pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameGomes
person.familyNameRuano
person.familyNameRuano
person.givenNameIsaías
person.givenNameMaria
person.givenNameAntonio
person.identifier.ciencia-id9A16-51D0-5AF9
person.identifier.ciencia-id9811-A0DD-D5A5
person.identifier.orcid0000-0003-3110-6644
person.identifier.orcid0000-0002-0014-9257
person.identifier.orcid0000-0002-6308-8666
person.identifier.ridA-8321-2011
person.identifier.ridB-4135-2008
person.identifier.scopus-author-id57188648074
person.identifier.scopus-author-id7004483805
person.identifier.scopus-author-id7004284159
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication74290668-6ac2-4bf6-9a55-93cc73757ca0
relation.isAuthorOfPublication61fc8492-d73f-46ca-a3a3-4cd762a784e6
relation.isAuthorOfPublication13813664-b68b-40aa-97a9-91481a31ebf2
relation.isAuthorOfPublication.latestForDiscovery74290668-6ac2-4bf6-9a55-93cc73757ca0
relation.isProjectOfPublication9df77b70-8231-47e7-9b34-c702e9c6021c
relation.isProjectOfPublication.latestForDiscovery9df77b70-8231-47e7-9b34-c702e9c6021c

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
MILP based model predictive control for home energy management systems.pdf
Size:
10.5 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: