Publication
Incorporating physiological knowledge into correlative species distribution models minimizes bias introduced by the choice of calibration area.
dc.contributor.author | Zhang, Zhixin | |
dc.contributor.author | Zhou, Jinxin | |
dc.contributor.author | García Molinos, Jorge | |
dc.contributor.author | Mammola, Stefano | |
dc.contributor.author | Bede-Fazekas, Ákos | |
dc.contributor.author | Feng, Xiao | |
dc.contributor.author | Kitazawa, Daisuke | |
dc.contributor.author | Qiu, Tianlong | |
dc.contributor.author | Lin, Qiang | |
dc.contributor.author | Assis, Jorge | |
dc.date.accessioned | 2024-12-02T14:25:26Z | |
dc.date.available | 2024-12-02T14:25:26Z | |
dc.date.issued | 2024-05 | |
dc.description.abstract | Correlative species distribution models (SDMs) are important tools to estimate species' geographic distribution across space and time, but their reliability heavily relies on the availability and quality of occurrence data. Estimations can be biased when occurrences do not fully represent the environmental requirement of a species. We tested to what extent species' physiological knowledge might influence SDM estimations. Focusing on the Japanese sea cucumber within the coastal ocean of East Asia, we compiled a comprehensive dataset of occurrence records. We then explored the importance of incorporating physiological knowledge into SDMs by calibrating two types of correlative SDMs: a naïve model that solely depends on environmental correlates, and a physiologically informed model that further incorporates physiological information as priors. We further tested the models' sensitivity to calibration area choices by fitting them with different buffered areas around known presences. Compared with naïve models, the physiologically informed models successfully captured the negative influence of high temperature on and were less sensitive to the choice of calibration area. The naïve models resulted in more optimistic prediction of the changes of potential distributions under climate change (i.e., larger range expansion and less contraction) than the physiologically informed models. Our findings highlight benefits from incorporating physiological information into correlative SDMs, namely mitigating the uncertainties associated with the choice of calibration area. Given these promising features, we encourage future SDM studies to consider species physiological information where available. | eng |
dc.description.abstract | The online version contains supplementary material available at 10.1007/s42995-024-00226-0. | eng |
dc.description.sponsorship | PTDC/BIA-CBI/6515/2020 | |
dc.identifier.doi | 10.1007/s42995-024-00226-0 | |
dc.identifier.eissn | 2662-1746 | |
dc.identifier.other | 38827135 | |
dc.identifier.uri | http://hdl.handle.net/10400.1/26377 | |
dc.language.iso | eng | |
dc.peerreviewed | yes | |
dc.publisher | Springer Nature | |
dc.relation | Algarve Centre for Marine Sciences | |
dc.relation | Algarve Centre for Marine Sciences | |
dc.relation | Centre for Marine and Environmental Research | |
dc.relation | Climate-informed prioritization of marine biodiversity hotspots to support the implementation of the post-2020 biodiversity framework | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Bayesian approach | |
dc.subject | Climate change | |
dc.subject | Habitat suitability | |
dc.subject | Physiological knowledge | |
dc.subject | Species distribution model | |
dc.title | Incorporating physiological knowledge into correlative species distribution models minimizes bias introduced by the choice of calibration area. | eng |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.awardTitle | Algarve Centre for Marine Sciences | |
oaire.awardTitle | Algarve Centre for Marine Sciences | |
oaire.awardTitle | Centre for Marine and Environmental Research | |
oaire.awardTitle | Climate-informed prioritization of marine biodiversity hotspots to support the implementation of the post-2020 biodiversity framework | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04326%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04326%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0101%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/3599-PPCDT/PTDC%2FBIA-CBI%2F6515%2F2020/PT | |
oaire.awardURI | info:eu-repo/grantAgreement/FCT/CEEC IND5ed/2022.00861.CEECIND%2FCP1729%2FCT0003/PT | |
oaire.citation.endPage | 362 | |
oaire.citation.issue | 2 | |
oaire.citation.startPage | 349 | |
oaire.citation.title | Marine life science & technology | |
oaire.citation.volume | 6 | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 6817 - DCRRNI ID | |
oaire.fundingStream | 3599-PPCDT | |
oaire.fundingStream | CEEC IND5ed | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
person.familyName | Assis | |
person.givenName | Jorge | |
person.identifier.ciencia-id | 5C1D-05B6-29F7 | |
person.identifier.orcid | 0000-0002-6624-4820 | |
person.identifier.rid | G-9688-2012 | |
person.identifier.scopus-author-id | 53463298700 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.identifier | http://doi.org/10.13039/501100001871 | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
project.funder.name | Fundação para a Ciência e a Tecnologia | |
relation.isAuthorOfPublication | c794f76b-9001-4ac1-913a-bb0f3aab6ef5 | |
relation.isAuthorOfPublication.latestForDiscovery | c794f76b-9001-4ac1-913a-bb0f3aab6ef5 | |
relation.isProjectOfPublication | fafa76a6-2cd2-4a6d-a3c9-772f34d3b91f | |
relation.isProjectOfPublication | 15f91d45-e070-47d8-b6b8-efd4de31d9a8 | |
relation.isProjectOfPublication | 794d4c77-c731-471e-bc96-5a41dcd3d872 | |
relation.isProjectOfPublication | bd51a607-289c-4d2c-b9d2-f5de0800e011 | |
relation.isProjectOfPublication | 18d65279-e671-4abc-a579-dc4f4c2bc073 | |
relation.isProjectOfPublication.latestForDiscovery | fafa76a6-2cd2-4a6d-a3c9-772f34d3b91f |