Name: | Description: | Size: | Format: | |
---|---|---|---|---|
7.6 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
As a significant component of the intelligent transportation system, forecasting bus passenger
flows plays a key role in resource allocation, network planning, and frequency setting. However, it remains
challenging to recognize high fluctuations, nonlinearity, and periodicity of bus passenger flows due to
varied destinations and departure times. For this reason, a novel forecasting model named as affinity
propagation-based support vector regression (AP-SVR) is proposed based on clustering and nonlinear
simulation. For the addressed approach, a clustering algorithm is first used to generate clustering-based
intervals. A support vector regression (SVR) is then exploited to forecast the passenger flow for each
cluster, with the use of particle swarm optimization (PSO) for obtaining the optimized parameters. Finally,
the prediction results of the SVR are rearranged by chronological order rearrangement. The proposed model
is tested using real bus passenger data from a bus line over four months. Experimental results demonstrate
that the proposed model performs better than other peer models in terms of absolute percentage error and
mean absolute percentage error. It is recommended that the deterministic clustering technique with stable
cluster results (AP) can improve the forecasting performance significantly.
Description
Keywords
Affinity propagation Support vector regression Passenger flow Forecasting Particle swarm optimization
Citation
Publisher
Institute of Electrical and Electronics Engineers