Repository logo
 
Publication

Forecasting closures on shellfish farms using machine learning

dc.contributor.authorO’Donncha, Fearghal
dc.contributor.authorAkhriev, Albert
dc.contributor.authorFragoso, Bruno
dc.contributor.authorIcely, John
dc.date.accessioned2024-04-09T08:42:47Z
dc.date.available2024-04-09T08:42:47Z
dc.date.issued2024
dc.description.abstractBiotoxins and harmful algal blooms (HABs) are damaging to aquaculture operations. Occurrences lead to disrupted operations, fish kills, and significant risks to human health. The conditions leading to blooms are driven by known, but complex processes. Heuristics exist about the drivers but the nonlinearity and opaqueness of relationships make it difficult to resolve using traditional rule-based mathematical models. An alternative approach leverages machine learning to uncover the conditions that lead to the closure of farms. This paper presents a comprehensive framework that combines semi-automated machine learning with ensemble classification approaches to predict site closures. Performance is evaluated on 7 years of site closure data from a shellfish farm in Southwest Portugal, together with publicly available environmental data. The model reports an accuracy of 83% across a challenging forecasting task. The proposed framework provides a pragmatic, scalable, site-specific decision tool to help aquaculture stakeholders mitigate the impacts of HABs.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.doi10.1007/s10499-024-01438-ypt_PT
dc.identifier.issn0967-6120
dc.identifier.urihttp://hdl.handle.net/10400.1/20612
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherSpringerpt_PT
dc.relationGreen Aquaculture Intensification in Europe
dc.subjectMachine learningpt_PT
dc.subjectHarmful algal bloomspt_PT
dc.subjectAquaculturept_PT
dc.subjectAutoAIpt_PT
dc.titleForecasting closures on shellfish farms using machine learningpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleGreen Aquaculture Intensification in Europe
oaire.awardURIinfo:eu-repo/grantAgreement/EC/H2020/773330/EU
oaire.citation.titleAquaculture Internationalpt_PT
oaire.fundingStreamH2020
person.familyNameDias Duarte Fragoso
person.familyNameIcely
person.givenNameBruno
person.givenNameJohn
person.identifier.ciencia-id2C1A-11F1-3BF2
person.identifier.orcid0000-0003-4531-3265
person.identifier.orcid0000-0002-9114-8283
person.identifier.scopus-author-id6506626316
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.nameEuropean Commission
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication6bcf77c5-0940-49b7-a9ed-acca121781c9
relation.isAuthorOfPublicationd8d4a6eb-57ae-440b-99b9-5f981d237cdf
relation.isAuthorOfPublication.latestForDiscovery6bcf77c5-0940-49b7-a9ed-acca121781c9
relation.isProjectOfPublicationce1fc0f0-2958-4ba8-af11-5bcd8a62078a
relation.isProjectOfPublication.latestForDiscoveryce1fc0f0-2958-4ba8-af11-5bcd8a62078a

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s10499-024-01438-y.pdf
Size:
1.89 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: